These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31287292)
1. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. Ma F; Xie HB; Elm J; Shen J; Chen J; Vehkamäki H Environ Sci Technol; 2019 Aug; 53(15):8785-8795. PubMed ID: 31287292 [TBL] [Abstract][Full Text] [Related]
2. Atmospheric Fate of Monoethanolamine: Enhancing New Particle Formation of Sulfuric Acid as an Important Removal Process. Xie HB; Elm J; Halonen R; Myllys N; Kurtén T; Kulmala M; Vehkamäki H Environ Sci Technol; 2017 Aug; 51(15):8422-8431. PubMed ID: 28651044 [TBL] [Abstract][Full Text] [Related]
3. Unexpected enhancement of sulfuric acid-driven new particle formation by alcoholic amines: The role of ion-induced nucleation. Wang S; Zhang Q; Wang W; Wang Q J Environ Manage; 2023 Dec; 347():119079. PubMed ID: 37748297 [TBL] [Abstract][Full Text] [Related]
4. Atmospheric Oxidation of Piperazine Initiated by ·Cl: Unexpected High Nitrosamine Yield. Ma F; Ding Z; Elm J; Xie HB; Yu Q; Liu C; Li C; Fu Z; Zhang L; Chen J Environ Sci Technol; 2018 Sep; 52(17):9801-9809. PubMed ID: 30063348 [TBL] [Abstract][Full Text] [Related]
5. Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. Li H; Ning A; Zhong J; Zhang H; Liu L; Zhang Y; Zhang X; Zeng XC; He H Chemosphere; 2020 Apr; 245():125554. PubMed ID: 31874321 [TBL] [Abstract][Full Text] [Related]
6. Methanesulfonic Acid-driven New Particle Formation Enhanced by Monoethanolamine: A Computational Study. Shen J; Xie HB; Elm J; Ma F; Chen J; Vehkamäki H Environ Sci Technol; 2019 Dec; 53(24):14387-14397. PubMed ID: 31710478 [TBL] [Abstract][Full Text] [Related]
7. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. Shen J; Elm J; Xie HB; Chen J; Niu J; Vehkamäki H Environ Sci Technol; 2020 Nov; 54(21):13498-13508. PubMed ID: 33091300 [TBL] [Abstract][Full Text] [Related]
8. Computational investigation of the nitrosation mechanism of piperazine in CO Yu Q; Wang P; Ma F; Xie HB; He N; Chen J Chemosphere; 2017 Nov; 186():341-349. PubMed ID: 28800535 [TBL] [Abstract][Full Text] [Related]
9. Propionamide participating in H Zhao X; Li Y; Zuo C; Sun Y; Xu F; Nadykto AB; Du L; Xu Y; Zhang Q; Wang W RSC Adv; 2020 Dec; 11(1):493-500. PubMed ID: 35423025 [TBL] [Abstract][Full Text] [Related]
10. Role of glycine on sulfuric acid-ammonia clusters formation: Transporter or participator. Li D; Chen D; Liu F; Wang W J Environ Sci (China); 2020 Mar; 89():125-135. PubMed ID: 31892385 [TBL] [Abstract][Full Text] [Related]
11. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Yao L; Garmash O; Bianchi F; Zheng J; Yan C; Kontkanen J; Junninen H; Mazon SB; Ehn M; Paasonen P; Sipilä M; Wang M; Wang X; Xiao S; Chen H; Lu Y; Zhang B; Wang D; Fu Q; Geng F; Li L; Wang H; Qiao L; Yang X; Chen J; Kerminen VM; Petäjä T; Worsnop DR; Kulmala M; Wang L Science; 2018 Jul; 361(6399):278-281. PubMed ID: 30026225 [TBL] [Abstract][Full Text] [Related]
12. Experimental and Theoretical Study on the Enhancement of Alkanolamines on Sulfuric Acid Nucleation. Fomete SKW; Johnson JS; Myllys N; Jen CN J Phys Chem A; 2022 Jun; 126(25):4057-4067. PubMed ID: 35729723 [TBL] [Abstract][Full Text] [Related]
13. Diamines Can Initiate New Particle Formation in the Atmosphere. Elm J; Passananti M; Kurtén T; Vehkamäki H J Phys Chem A; 2017 Aug; 121(32):6155-6164. PubMed ID: 28732163 [TBL] [Abstract][Full Text] [Related]
14. The potential mechanism of atmospheric new particle formation involving amino acids with multiple functional groups. Liu J; Liu L; Rong H; Zhang X Phys Chem Chem Phys; 2021 May; 23(17):10184-10195. PubMed ID: 33751015 [TBL] [Abstract][Full Text] [Related]
15. Exergy, advance exergy, and exergo-environmental based assessment of alkanol amine- and piperazine-based solvents for natural gas purification. Kazmi B; Ali Ammar Taqvi S; Raza F; Haider J; Naqvi SR; Khan MS; Ali A Chemosphere; 2022 Nov; 307(Pt 4):136001. PubMed ID: 35987263 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive mass transfer analysis of CO Nakrak S; Tontiwachwuthikul P; Gao H; Liang Z; Sema T Environ Sci Pollut Res Int; 2023 Jan; 30(4):10001-10023. PubMed ID: 36066795 [TBL] [Abstract][Full Text] [Related]
17. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication. Ge P; Luo G; Luo Y; Huang W; Xie H; Chen J; Qu J Chemosphere; 2018 Nov; 210():215-223. PubMed ID: 30005342 [TBL] [Abstract][Full Text] [Related]
18. A theoretical study on the formation mechanism of carboxylic sulfuric anhydride and its potential role in new particle formation. Zhang H; Wang W; Li H; Gao R; Xu Y RSC Adv; 2022 Feb; 12(9):5501-5508. PubMed ID: 35425569 [TBL] [Abstract][Full Text] [Related]
19. Enhancing acid-base-water ternary aerosol nucleation with organic acid: a case of tartaric acid. Wang C; Zhao J; Chen X; Zhang R; Jiang S Phys Chem Chem Phys; 2023 Jul; 25(28):19147-19157. PubMed ID: 37431597 [TBL] [Abstract][Full Text] [Related]
20. Contribution of Methanesulfonic Acid to the Formation of Molecular Clusters in the Marine Atmosphere. Rasmussen FR; Kubečka J; Elm J J Phys Chem A; 2022 Oct; 126(40):7127-7136. PubMed ID: 36191242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]