These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 31287301)

  • 1. Significantly Enhanced Production of Patchoulol in Metabolically Engineered
    Ma B; Liu M; Li ZH; Tao X; Wei DZ; Wang FQ
    J Agric Food Chem; 2019 Aug; 67(31):8590-8598. PubMed ID: 31287301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of sesquiterpene patchoulol in mitochondrion-engineered Saccharomyces cerevisiae.
    Tao XY; Lin YC; Wang FQ; Liu QH; Ma YS; Liu M; Wei DZ
    Biotechnol Lett; 2022 Apr; 44(4):571-580. PubMed ID: 35254611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Level Production of Sesquiterpene Patchoulol in
    Liu M; Lin YC; Guo JJ; Du MM; Tao X; Gao B; Zhao M; Ma Y; Wang FQ; Wei DZ
    ACS Synth Biol; 2021 Jan; 10(1):158-172. PubMed ID: 33395273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis.
    Asadollahi MA; Maury J; Møller K; Nielsen KF; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2008 Feb; 99(3):666-77. PubMed ID: 17705244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode.
    Scalcinati G; Knuf C; Partow S; Chen Y; Maury J; Schalk M; Daviet L; Nielsen J; Siewers V
    Metab Eng; 2012 Mar; 14(2):91-103. PubMed ID: 22330799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of yeast producing patchoulol by global metabolic engineering strategy.
    Mitsui R; Nishikawa R; Yamada R; Matsumoto T; Ogino H
    Biotechnol Bioeng; 2020 May; 117(5):1348-1356. PubMed ID: 31981219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae.
    Scalcinati G; Partow S; Siewers V; Schalk M; Daviet L; Nielsen J
    Microb Cell Fact; 2012 Aug; 11():117. PubMed ID: 22938570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Level Production of Patchoulol in
    Peng QQ; Guo Q; Chen C; Song P; Wang YT; Ji XJ; Ye C; Shi TQ
    J Agric Food Chem; 2023 Mar; 71(11):4638-4645. PubMed ID: 36883816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overproduction of Patchoulol in Metabolically Engineered
    Luo G; Lin Y; Chen S; Xiao R; Zhang J; Li C; Sinskey AJ; Ye L; Liang S
    J Agric Food Chem; 2023 Feb; 71(4):2049-2058. PubMed ID: 36681940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Patchoulol Production in
    Zhou L; Wang Y; Han L; Wang Q; Liu H; Cheng P; Li R; Guo X; Zhou Z
    J Agric Food Chem; 2021 Jul; 69(27):7572-7580. PubMed ID: 34196182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM; Kirby J; Chan R; Keasling JD
    Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene.
    Hu Y; Zhou YJ; Bao J; Huang L; Nielsen J; Krivoruchko A
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1065-1072. PubMed ID: 28547322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm.
    Zhang Y; Wang J; Cao X; Liu W; Yu H; Ye L
    Enzyme Microb Technol; 2020 Mar; 134():109462. PubMed ID: 32044019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae.
    Xie W; Ye L; Lv X; Xu H; Yu H
    Metab Eng; 2015 Mar; 28():8-18. PubMed ID: 25475893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overproduction of α-Farnesene in
    Wang J; Jiang W; Liang C; Zhu L; Li Y; Mo Q; Xu S; Chu A; Zhang L; Ding Z; Shi G
    J Agric Food Chem; 2021 Mar; 69(10):3103-3113. PubMed ID: 33683134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for production of valerenadiene.
    Nybo SE; Saunders J; McCormick SP
    J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability.
    Bernard A; Cha S; Shin H; Lee D; Hahn JS
    Metab Eng; 2024 May; 83():183-192. PubMed ID: 38631459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Saccharomyces cerevisiae for geranylgeraniol overproduction by combinatorial design.
    Song TQ; Ding MZ; Zhai F; Liu D; Liu H; Xiao WH; Yuan YJ
    Sci Rep; 2017 Nov; 7(1):14991. PubMed ID: 29118396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.