BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31287609)

  • 1. Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen Evolution Reaction in Alkaline Media.
    Enman LJ; Vise AE; Burke Stevens M; Boettcher SW
    Chemphyschem; 2019 Nov; 20(22):3089-3095. PubMed ID: 31287609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modes of Fe Incorporation in Co-Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts.
    Zhang T; Nellist MR; Enman LJ; Xiang J; Boettcher SW
    ChemSusChem; 2019 May; 12(9):2015-2021. PubMed ID: 30371020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Study of the Synergy between Iron and Transition Metals for the Catalysis of the Oxygen Evolution Reaction.
    Gong L; Koh J; Yeo BS
    ChemSusChem; 2018 Nov; 11(21):3790-3795. PubMed ID: 30191682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.
    Trotochaud L; Young SL; Ranney JK; Boettcher SW
    J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.
    Burke MS; Kast MG; Trotochaud L; Smith AM; Boettcher SW
    J Am Chem Soc; 2015 Mar; 137(10):3638-48. PubMed ID: 25700234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base.
    Ou Y; Twight LP; Samanta B; Liu L; Biswas S; Fehrs JL; Sagui NA; Villalobos J; Morales-Santelices J; Antipin D; Risch M; Toroker MC; Boettcher SW
    Nat Commun; 2023 Nov; 14(1):7688. PubMed ID: 38001061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchically Structured FeNiO
    Wu X; Zhao Y; Xing T; Zhang P; Li F; Lee H; Li F; Sun L
    ChemSusChem; 2018 Jun; 11(11):1761-1767. PubMed ID: 29660805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.
    Görlin M; Ferreira de Araújo J; Schmies H; Bernsmeier D; Dresp S; Gliech M; Jusys Z; Chernev P; Kraehnert R; Dau H; Strasser P
    J Am Chem Soc; 2017 Feb; 139(5):2070-2082. PubMed ID: 28080038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the role of defects in iron oxyhydroxide for oxygen evolution.
    Han J; Niu X; Guan J
    J Colloid Interface Sci; 2023 Apr; 635():167-175. PubMed ID: 36586142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity.
    Stevens MB; Trang CDM; Enman LJ; Deng J; Boettcher SW
    J Am Chem Soc; 2017 Aug; 139(33):11361-11364. PubMed ID: 28789520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting oxygen evolution activity of nickel iron hydroxide by iron hydroxide colloidal particles.
    Li Q; He T; Jiang X; Lei Y; Liu Q; Liu C; Sun Z; Chen S; Zhang Y
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):518-525. PubMed ID: 34403861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems.
    Cheng X; Kim BJ; Fabbri E; Schmidt TJ
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):34787-34795. PubMed ID: 31469262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the 3-D morphology of Ni-Fe-based nanocatalysts for the oxygen evolution reaction.
    Manso RH; Acharya P; Deng S; Crane CC; Reinhart B; Lee S; Tong X; Nykypanchuk D; Zhu J; Zhu Y; Greenlee LF; Chen J
    Nanoscale; 2019 Apr; 11(17):8170-8184. PubMed ID: 30775739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ni-Xides (B, S, and P) for Alkaline OER: Shedding Light on Reconstruction Processes and Interplay with Incidental Fe Impurities as Synergistic Activity Drivers.
    El-Refaei SM; Rauret DL; Manjón AG; Spanos I; Zeradjanin A; Dieckhöfer S; Arbiol J; Schuhmann W; Masa J
    ACS Appl Energy Mater; 2024 Feb; 7(4):1369-1381. PubMed ID: 38425378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.
    Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P
    J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Fe(III) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)
    Chang J; Chen L; Zang S; Wang Y; Wu D; Xu F; Jiang K; Gao Z
    J Colloid Interface Sci; 2020 Jun; 569():50-56. PubMed ID: 32097801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Fe stabilized metallic phase of NiS
    Ding X; Li W; Kuang H; Qu M; Cui M; Zhao C; Qi DC; Oropeza FE; Zhang KHL
    Nanoscale; 2019 Dec; 11(48):23217-23225. PubMed ID: 31782464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterolayered Ni-Fe Hydroxide/Oxide Nanostructures Generated on a Stainless-Steel Substrate for Efficient Alkaline Water Splitting.
    Todoroki N; Wadayama T
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44161-44169. PubMed ID: 31670501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.