These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31287676)

  • 1. Identifying Active Sites for CO
    Chen Y; Huang Y; Cheng T; Goddard WA
    J Am Chem Soc; 2019 Jul; 141(29):11651-11657. PubMed ID: 31287676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles.
    Cheng T; Huang Y; Xiao H; Goddard WA
    J Phys Chem Lett; 2017 Jul; 8(14):3317-3320. PubMed ID: 28675927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the Active Sites for CO Reduction on Copper Nanoparticles; Suggestions for Optimizing Performance.
    Cheng T; Xiao H; Goddard WA
    J Am Chem Soc; 2017 Aug; 139(34):11642-11645. PubMed ID: 28810738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and Computational Study Toward Identifying Active Sites of Supported SnO
    Shi J; Pršlja P; Jin B; Suominen M; Sainio J; Jiang H; Han N; Robertson D; Košir J; Caro M; Kallio T
    Small; 2024 May; ():e2402190. PubMed ID: 38794869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Solution Syntheses of the Tetrahedral Au
    Zhang QF; Chen X; Wang LS
    Acc Chem Res; 2018 Sep; 51(9):2159-2168. PubMed ID: 30070827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Design of Core/Shell Nanoparticles for Oxygen Reduction Reactions.
    Zhang X; Lu G
    J Phys Chem Lett; 2014 Jan; 5(2):292-7. PubMed ID: 26270702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure- and Electrolyte-Sensitivity in CO
    Arán-Ais RM; Gao D; Roldan Cuenya B
    Acc Chem Res; 2018 Nov; 51(11):2906-2917. PubMed ID: 30335937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT-based Machine Learning for Ensemble Effect of Pd@Au Electrocatalysts on CO
    Liu F; Gao PF; Wu C; Yang S; Ding X
    Chemphyschem; 2023 Apr; 24(8):e202200642. PubMed ID: 36633526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu metal embedded in oxidized matrix catalyst to promote CO
    Xiao H; Goddard WA; Cheng T; Liu Y
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6685-6688. PubMed ID: 28607069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational insights into the strain effect on the electrocatalytic reduction of CO
    Liu H; Liu J; Yang B
    Phys Chem Chem Phys; 2020 May; 22(17):9600-9606. PubMed ID: 32322855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational screening of M/Cu core/shell nanoparticles and their applications for the electro-chemical reduction of CO
    Dong H; Liu C; Li Y; Jiang DE
    Nanoscale; 2019 Jun; 11(23):11351-11359. PubMed ID: 31166347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic origins of the high catalytic activity of nanoporous gold.
    Fujita T; Guan P; McKenna K; Lang X; Hirata A; Zhang L; Tokunaga T; Arai S; Yamamoto Y; Tanaka N; Ishikawa Y; Asao N; Yamamoto Y; Erlebacher J; Chen M
    Nat Mater; 2012 Sep; 11(9):775-80. PubMed ID: 22886067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning in Screening High Performance Electrocatalysts for CO
    Zhang N; Yang B; Liu K; Li H; Chen G; Qiu X; Li W; Hu J; Fu J; Jiang Y; Liu M; Ye J
    Small Methods; 2021 Nov; 5(11):e2100987. PubMed ID: 34927959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface science investigations of oxidative chemistry on gold.
    Gong J; Mullins CB
    Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale.
    Oezaslan M; Heggen M; Strasser P
    J Am Chem Soc; 2012 Jan; 134(1):514-24. PubMed ID: 22129031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh Mass Activity for Carbon Dioxide Reduction Enabled by Gold-Iron Core-Shell Nanoparticles.
    Sun K; Cheng T; Wu L; Hu Y; Zhou J; Maclennan A; Jiang Z; Gao Y; Goddard WA; Wang Z
    J Am Chem Soc; 2017 Nov; 139(44):15608-15611. PubMed ID: 28990777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale simulations of ligand adsorption and exchange on gold nanoparticles.
    Gao HM; Liu H; Qian HJ; Jiao GS; Lu ZY
    Phys Chem Chem Phys; 2018 Jan; 20(3):1381-1394. PubMed ID: 29271449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving CO
    Chang K; Jian X; Jeong HM; Kwon Y; Lu Q; Cheng MJ
    J Phys Chem Lett; 2020 Mar; 11(5):1896-1902. PubMed ID: 32069406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.