These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31287685)

  • 1. Intersystem Crossings Drive Atmospheric Gas-Phase Dimer Formation.
    Valiev RR; Hasan G; Salo VT; Kubečka J; Kurten T
    J Phys Chem A; 2019 Aug; 123(30):6596-6604. PubMed ID: 31287685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Reaction Routes for
    Hasan G; Salo VT; Valiev RR; Kubečka J; Kurtén T
    J Phys Chem A; 2020 Oct; 124(40):8305-8320. PubMed ID: 32902986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-Phase Peroxyl Radical Recombination Reactions: A Computational Study of Formation and Decomposition of Tetroxides.
    Salo VT; Valiev R; Lehtola S; Kurtén T
    J Phys Chem A; 2022 Jun; 126(25):4046-4056. PubMed ID: 35709531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Investigation of the Formation of Peroxide (ROOR) Accretion Products in the OH- and NO
    Hasan G; Valiev RR; Salo VT; Kurtén T
    J Phys Chem A; 2021 Dec; 125(50):10632-10639. PubMed ID: 34881893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Investigation of Substituent Effects on the Alcohol + Carbonyl Channel of Peroxy Radical Self- and Cross-Reactions.
    Hasan G; Salo VT; Golin Almeida T; Valiev RR; Kurtén T
    J Phys Chem A; 2023 Feb; 127(7):1686-1696. PubMed ID: 36753050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neglected pathway for the accretion products formation in the atmosphere.
    Shi X; Tang R; Dong Z; Liu H; Xu F; Zhang Q; Zong W; Cheng J
    Sci Total Environ; 2022 Nov; 848():157494. PubMed ID: 35914590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Gas-Phase Source of Esters and Other Accretion Products in the Atmosphere.
    Peräkylä O; Berndt T; Franzon L; Hasan G; Meder M; Valiev RR; Daub CD; Varelas JG; Geiger FM; Thomson RJ; Rissanen M; Kurtén T; Ehn M
    J Am Chem Soc; 2023 Apr; 145(14):7780-7790. PubMed ID: 36995167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Investigation of RO
    Iyer S; Reiman H; Møller KH; Rissanen MP; Kjaergaard HG; Kurtén T
    J Phys Chem A; 2018 Dec; 122(49):9542-9552. PubMed ID: 30449100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory study of 1,2-dioxetanone decomposition in condensed phase.
    Pinto da Silva L; Esteves da Silva JC
    J Comput Chem; 2012 Oct; 33(26):2118-23. PubMed ID: 22522749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and reactivity of peroxy radicals and dimeric products revealed by online tandem mass spectrometry.
    Tomaz S; Wang D; Zabalegui N; Li D; Lamkaddam H; Bachmeier F; Vogel A; Monge ME; Perrier S; Baltensperger U; George C; Rissanen M; Ehn M; El Haddad I; Riva M
    Nat Commun; 2021 Jan; 12(1):300. PubMed ID: 33436593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry.
    Zhao Y; Thornton JA; Pye HOT
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12142-12147. PubMed ID: 30413618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals.
    Berndt T; Richters S; Kaethner R; Voigtländer J; Stratmann F; Sipilä M; Kulmala M; Herrmann H
    J Phys Chem A; 2015 Oct; 119(41):10336-48. PubMed ID: 26392132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic potential energy surfaces of initial oxidations of Si(100) by atomic oxygen: the importance of surface dimer triplet state.
    Kim TR; Shin S; Choi CH
    J Chem Phys; 2012 Jun; 136(21):214704. PubMed ID: 22697563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of intersystem crossing in the C(
    Mandal M; Mahata P; Maiti B
    Phys Chem Chem Phys; 2020 Apr; 22(16):8418-8426. PubMed ID: 32270796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the gas-phase bimolecular self-reaction of the HOO radical.
    Anglada JM; Olivella S; Solé A
    J Phys Chem A; 2007 Mar; 111(9):1695-704. PubMed ID: 17290977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triplet-state formation along the ultrafast decay of excited singlet cytosine.
    Merchán M; Serrano-Andrés L; Robb MA; Blancafort L
    J Am Chem Soc; 2005 Feb; 127(6):1820-5. PubMed ID: 15701017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction Dynamics of O((3)P) + Propyne: I. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Crossed Molecular Beam Experiments.
    Vanuzzo G; Balucani N; Leonori F; Stranges D; Nevrly V; Falcinelli S; Bergeat A; Casavecchia P; Cavallotti C
    J Phys Chem A; 2016 Jul; 120(27):4603-18. PubMed ID: 27046287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of solvent on carbene intersystem crossing rates.
    Wang J; Kubicki J; Peng H; Platz MS
    J Am Chem Soc; 2008 May; 130(20):6604-9. PubMed ID: 18433130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical investigation of intersystem crossing in the cyanonitrene molecule,
    Pfeifle M; Georgievskii Y; Jasper AW; Klippenstein SJ
    J Chem Phys; 2017 Aug; 147(8):084310. PubMed ID: 28863540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.