These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31287927)

  • 1. Evolutionary potential of a widespread clonal grass under changing climate.
    Stojanova B; Koláříková V; Šurinová M; Klápště J; Hadincová V; Münzbergová Z
    J Evol Biol; 2019 Oct; 32(10):1057-1068. PubMed ID: 31287927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits.
    Stojanova B; Šurinová M; Klápště J; Koláříková V; Hadincová V; Münzbergová Z
    PLoS One; 2018; 13(4):e0194670. PubMed ID: 29617461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic response of a perennial grass to warm and wet environments interacts and is associated with trait means as well as plasticity.
    Münzbergová Z; Šurinová M; Biscarini F; Níčová E
    J Evol Biol; 2024 Jun; 37(6):704-716. PubMed ID: 38761114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of ecophysiological traits in response of Festuca rubra to changing climate.
    Kosová V; Hájek T; Hadincová V; Münzbergová Z
    Physiol Plant; 2022 Jan; 174(1):e13608. PubMed ID: 34837234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates.
    Münzbergová Z; Vandvik V; Hadincová V
    Front Plant Sci; 2021; 12():659479. PubMed ID: 34079569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid genetic divergence in response to 15 years of simulated climate change.
    Ravenscroft CH; Whitlock R; Fridley JD
    Glob Chang Biol; 2015 Nov; 21(11):4165-76. PubMed ID: 26311135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains.
    Bemmels JB; Anderson JT
    Evolution; 2019 Nov; 73(11):2247-2262. PubMed ID: 31584183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High evolutionary constraints limited adaptive responses to past climate changes in toad skulls.
    Simon MN; Machado FA; Marroig G
    Proc Biol Sci; 2016 Oct; 283(1841):. PubMed ID: 27798306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic covariances promote climatic adaptation in Australian Drosophila.
    Hangartner S; Lasne C; Sgrò CM; Connallon T; Monro K
    Evolution; 2020 Feb; 74(2):326-337. PubMed ID: 31432496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing hidden evolutionary capacity to cope with global change.
    Chirgwin E; Monro K; Sgro CM; Marshall DJ
    Glob Chang Biol; 2015 Sep; 21(9):3356-66. PubMed ID: 25781417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1459-71. PubMed ID: 15341149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Latitudinal variation in climate-associated genes imperils range edge populations.
    Smith S; Brauer CJ; Sasaki M; Unmack PJ; Guillot G; Laporte M; Bernatchez L; Beheregaray LB
    Mol Ecol; 2020 Nov; 29(22):4337-4349. PubMed ID: 32930432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geographical gradients in selection can reveal genetic constraints for evolutionary responses to ocean acidification.
    Gaitán-Espitia JD; Marshall D; Dupont S; Bacigalupe LD; Bodrossy L; Hobday AJ
    Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28148831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1446-58. PubMed ID: 15341148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution in stressful environments. I. Phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stresses.
    Stanton ML; Roy BA; Thiede DA
    Evolution; 2000 Feb; 54(1):93-111. PubMed ID: 10937187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments.
    Chen Z; Farrell AP; Matala A; Narum SR
    Mol Ecol; 2018 Feb; 27(3):659-674. PubMed ID: 29290103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution in response to climate change: in pursuit of the missing evidence.
    Merilä J
    Bioessays; 2012 Sep; 34(9):811-8. PubMed ID: 22782862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change.
    Buckley J; Butlin RK; Bridle JR
    Mol Ecol; 2012 Jan; 21(2):267-80. PubMed ID: 22118243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Consequences of Biologically Altered Environments.
    D'Aguillo M; Hazelwood C; Quarles B; Donohue K
    J Hered; 2022 Feb; 113(1):26-36. PubMed ID: 34534330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.