These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31288216)
41. Thrombin binding aptamer, more than a simple aptamer: chemically modified derivatives and biomedical applications. Avino A; Fabrega C; Tintore M; Eritja R Curr Pharm Des; 2012; 18(14):2036-47. PubMed ID: 22376107 [TBL] [Abstract][Full Text] [Related]
42. Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation. Chen Z; Chen L; Ma H; Zhou T; Li X Biosens Bioelectron; 2013 Oct; 48():108-12. PubMed ID: 23665159 [TBL] [Abstract][Full Text] [Related]
43. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Gu H; Duan N; Wu S; Hao L; Xia Y; Ma X; Wang Z Sci Rep; 2016 Feb; 6():21665. PubMed ID: 26898784 [TBL] [Abstract][Full Text] [Related]
44. Recognition Interface of the Thrombin Binding Aptamer Requires Antiparallel Topology of the Quadruplex Core. Svetlova J; Sardushkin M; Kolganova N; Timofeev E Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572544 [TBL] [Abstract][Full Text] [Related]
45. A highly sensitive DNA aptamer-based fluorescence assay for sarcosine detection down to picomolar levels. Özyurt C; Canbay ZÇ; Dinçkaya E; Evran S Int J Biol Macromol; 2019 May; 129():91-97. PubMed ID: 30738156 [TBL] [Abstract][Full Text] [Related]
46. Harnessing G-tetrad scaffolds within G-quadruplex forming aptamers for fluorescence detection strategies. Sproviero M; Manderville RA Chem Commun (Camb); 2014 Mar; 50(23):3097-9. PubMed ID: 24513595 [TBL] [Abstract][Full Text] [Related]
47. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Sun D; Lu J; Zhong Y; Yu Y; Wang Y; Zhang B; Chen Z Biosens Bioelectron; 2016 Jan; 75():301-7. PubMed ID: 26332382 [TBL] [Abstract][Full Text] [Related]
48. Rapid and sensitive detection of potassium ion based on K(+)-induced G-quadruplex and guanine chemiluminescence. Dong J; Zhao H; Zhou F; Li B Anal Bioanal Chem; 2016 Mar; 408(7):1863-9. PubMed ID: 26781100 [TBL] [Abstract][Full Text] [Related]
49. Highly sensitive electrochemical thrombin aptasensor based on peptide-enhanced electrocatalysis of hemin/G-quadruplex and nanocomposite as nanocarrier. Wu Y; Zou L; Lei S; Yu Q; Ye B Biosens Bioelectron; 2017 Nov; 97():317-324. PubMed ID: 28622642 [TBL] [Abstract][Full Text] [Related]
50. A portable microchip for ultrasensitive and high-throughput assay of thrombin by rolling circle amplification and hemin/G-quadruplex system. Lin X; Chen Q; Liu W; Li H; Lin JM Biosens Bioelectron; 2014 Jun; 56():71-6. PubMed ID: 24469539 [TBL] [Abstract][Full Text] [Related]
51. Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Zhang R; Lu N; Zhang J; Yan R; Li J; Wang L; Wang N; Lv M; Zhang M Biosens Bioelectron; 2020 Feb; 150():111881. PubMed ID: 31780408 [TBL] [Abstract][Full Text] [Related]
52. An enzyme-free DNA circuit for the amplified detection of Cd Pan J; Zeng L; Chen J Chem Commun (Camb); 2019 Oct; 55(79):11932-11935. PubMed ID: 31531427 [TBL] [Abstract][Full Text] [Related]
53. HIV-integrase aptamer folds into a parallel quadruplex: a thermodynamic study. Kelley S; Boroda S; Musier-Forsyth K; Kankia BI Biophys Chem; 2011 May; 155(2-3):82-8. PubMed ID: 21435774 [TBL] [Abstract][Full Text] [Related]
54. Self-locked aptamer probe mediated cascade amplification strategy for highly sensitive and selective detection of protein and small molecule. Li W; Jiang W; Wang L Anal Chim Acta; 2016 Oct; 940():1-7. PubMed ID: 27662754 [TBL] [Abstract][Full Text] [Related]
55. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme. Seok Y; Byun JY; Shim WB; Kim MG Anal Chim Acta; 2015 Jul; 886():182-7. PubMed ID: 26320651 [TBL] [Abstract][Full Text] [Related]
56. Determination of Aptamer Structure Using Circular Dichroism Spectroscopy. Kerler Y; Sass S; Hille C; Menger MM Methods Mol Biol; 2023; 2570():119-128. PubMed ID: 36156778 [TBL] [Abstract][Full Text] [Related]
57. Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer. Pica A; Russo Krauss I; Merlino A; Nagatoishi S; Sugimoto N; Sica F FEBS J; 2013 Dec; 280(24):6581-8. PubMed ID: 24128303 [TBL] [Abstract][Full Text] [Related]
58. Fluorescence detection of the human angiotensinogen protein by the G-quadruplex aptamer. Xi H; Jiang H; Juhas M; Zhang Y Analyst; 2022 Sep; 147(18):4040-4048. PubMed ID: 35983901 [TBL] [Abstract][Full Text] [Related]
59. High-Throughput Low-Background G-Quadruplex Aptamer Chemiluminescence Assay for Ochratoxin A Using a Single Photonic Crystal Microsphere. Shen P; Li W; Liu Y; Ding Z; Deng Y; Zhu X; Jin Y; Li Y; Li J; Zheng T Anal Chem; 2017 Nov; 89(21):11862-11868. PubMed ID: 28988477 [TBL] [Abstract][Full Text] [Related]
60. One-pot assay using a target-driven split aptamer recognition and assembly strategy for convenient and rapid detection of gliotoxin. Zheng X; Hu Z; Gao S; Li Z; Chen J; Zhang G; Kong N; Sun J; Liu W Food Chem; 2024 Oct; 454():139738. PubMed ID: 38820643 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]