BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31288217)

  • 1. Artery-vein segmentation in fundus images using a fully convolutional network.
    Hemelings R; Elen B; Stalmans I; Van Keer K; De Boever P; Blaschko MB
    Comput Med Imaging Graph; 2019 Sep; 76():101636. PubMed ID: 31288217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artery vein classification in fundus images using serially connected U-Nets.
    Karlsson RA; Hardarson SH
    Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated measurement of the arteriolar-to-venular width ratio in digital color fundus photographs.
    Niemeijer M; Xu X; Dumitrescu AV; Gupta P; van Ginneken B; Folk JC; Abramoff MD
    IEEE Trans Med Imaging; 2011 Nov; 30(11):1941-50. PubMed ID: 21690008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint segmentation and classification of retinal arteries/veins from fundus images.
    Girard F; Kavalec C; Cheriet F
    Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated selection of major arteries and veins for measurement of arteriolar-to-venular diameter ratio on retinal fundus images.
    Muramatsu C; Hatanaka Y; Iwase T; Hara T; Fujita H
    Comput Med Imaging Graph; 2011 Sep; 35(6):472-80. PubMed ID: 21489750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model.
    Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ
    Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hard Attention Net for Automatic Retinal Vessel Segmentation.
    Wang D; Haytham A; Pottenburgh J; Saeedi O; Tao Y
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3384-3396. PubMed ID: 32750941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous segmentation and classification of the retinal arteries and veins from color fundus images.
    Morano J; Hervella ÁS; Novo J; Rouco J
    Artif Intell Med; 2021 Aug; 118():102116. PubMed ID: 34412839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Keep it simple, scholar": an experimental analysis of few-parameter segmentation networks for retinal vessels in fundus imaging.
    Fu W; Breininger K; Schaffert R; Pan Z; Maier A
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):967-978. PubMed ID: 33929676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LUNet: deep learning for the segmentation of arterioles and venules in high resolution fundus images.
    Fhima J; Van Eijgen J; Billen Moulin-Romsée MI; Brackenier H; Kulenovic H; Debeuf V; Vangilbergen M; Freiman M; Stalmans I; Behar JA
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38599224
    [No Abstract]   [Full Text] [Related]  

  • 12. Multi-proportion channel ensemble model for retinal vessel segmentation.
    Tang P; Liang Q; Yan X; Zhang D; Coppola G; Sun W
    Comput Biol Med; 2019 Aug; 111():103352. PubMed ID: 31301636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the quantitative effects of compression of retinal fundus images on morphometric vascular measurements in VAMPIRE.
    INSPIRED project
    Comput Methods Programs Biomed; 2021 Apr; 202():105969. PubMed ID: 33631639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation.
    Li D; Rahardja S
    Comput Methods Programs Biomed; 2021 Jun; 205():106070. PubMed ID: 33857703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering.
    Zhao Y; Xie J; Zhang H; Zheng Y; Zhao Y; Qi H; Zhao Y; Su P; Liu J; Liu Y
    IEEE Trans Med Imaging; 2020 Feb; 39(2):341-356. PubMed ID: 31283498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast and efficient retinal blood vessel segmentation method based on deep learning network.
    Boudegga H; Elloumi Y; Akil M; Hedi Bedoui M; Kachouri R; Abdallah AB
    Comput Med Imaging Graph; 2021 Jun; 90():101902. PubMed ID: 33892389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules.
    Badawi SA; Fraz MM
    Biomed Res Int; 2019; 2019():4747230. PubMed ID: 31111055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal blood vessel segmentation using fully convolutional network with transfer learning.
    Jiang Z; Zhang H; Wang Y; Ko SB
    Comput Med Imaging Graph; 2018 Sep; 68():1-15. PubMed ID: 29775951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Scale Interactive Network With Artery/Vein Discriminator for Retinal Vessel Classification.
    Hu J; Wang H; Wu G; Cao Z; Mou L; Zhao Y; Zhang J
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3896-3905. PubMed ID: 35394918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.