These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31288380)

  • 41. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model.
    Yang J; Yang S; Zhang Y; Shi S; Du L
    Opt Express; 2021 Jan; 29(1):400-414. PubMed ID: 33362125
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance.
    Zeng C; Xu H; Fischer AM
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].
    Wu Q; Sun H; Li MZ; Song YY; Zhang YE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):178-83. PubMed ID: 25993844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea.
    Zhang D; Lavender S; Muller JP; Walton D; Karlson B; Kronsell J
    Sci Total Environ; 2017 Dec; 601-602():1060-1074. PubMed ID: 28599362
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Using in-situ reflectance to monitor the chlorophyll concentration in the surface layer of tidal flat].
    Xing QG; Yu DF; Lou MJ; Lü YC; Li SP; Han QY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Aug; 33(8):2188-91. PubMed ID: 24159873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].
    Xiao H; Chen XW; Yang ZY; Li HY; Zhu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3075-8. PubMed ID: 25752061
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of sub-pixel variations on ocean color remote sensing products.
    Lee Z; Hu C; Arnone R; Liu Z
    Opt Express; 2012 Sep; 20(19):20844-54. PubMed ID: 23037208
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retrieving Sun-Induced Chlorophyll Fluorescence from Hyperspectral Data with TanSat Satellite.
    Li S; Gao M; Li ZL
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300625
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [A novel vegetation index (MPRI) of corn canopy by vehicle-borne dynamic prediction].
    Li SQ; Li MZ; Sun H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jun; 34(6):1605-9. PubMed ID: 25358172
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Mälaren, Sweden, based on direct and inverse solutions of a simple model.
    Pierson DC; Strömbeck N
    Sci Total Environ; 2001 Mar; 268(1-3):171-88. PubMed ID: 11315739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Estimating apple tree canopy chlorophyll content based on Sentinel-2A remote sensing imaging.
    Li C; Zhu X; Wei Y; Cao S; Guo X; Yu X; Chang C
    Sci Rep; 2018 Feb; 8(1):3756. PubMed ID: 29491437
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Linking remote sensing parameters to CO
    Hikosaka K; Tsujimoto K
    J Plant Res; 2021 Jul; 134(4):695-711. PubMed ID: 34019204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter.
    Hoge FE; Lyon PE; Wright CW; Swift RN; Yungel JK
    Appl Opt; 2005 May; 44(14):2857-62. PubMed ID: 15943339
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimating leaf photosynthesis of C
    Tsujimoto K; Hikosaka K
    Photosynth Res; 2021 May; 148(1-2):33-46. PubMed ID: 33909221
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noise tolerance of algorithms for estimating chlorophyll a concentration in turbid waters.
    Chen J
    Environ Monit Assess; 2014 Apr; 186(4):2297-311. PubMed ID: 24343707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Analysis of spectral response of vegetation leaf biochemical components].
    Sun L; Cheng LJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3031-5. PubMed ID: 21284178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies.
    Zhou X; Liu Z; Xu S; Zhang W; Wu J
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data.
    Huang J; Wei C; Zhang Y; Blackburn GA; Wang X; Wei C; Wang J
    PLoS One; 2015; 10(9):e0137029. PubMed ID: 26356842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [High-spectral responses of Myrica rubra seedlings to UV-B radiation stress].
    Jin XJ; Jiang H; Chen J; Shi QL; Zhang QQ
    Ying Yong Sheng Tai Xue Bao; 2012 Dec; 23(12):3338-46. PubMed ID: 23479875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.