BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31288425)

  • 1. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization.
    Wang Y; Leng L; Islam MK; Liu F; Lin CSK; Leu SY
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31288425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes.
    Moraïs S; Morag E; Barak Y; Goldman D; Hadar Y; Lamed R; Shoham Y; Wilson DB; Bayer EA
    mBio; 2012 Dec; 3(6):. PubMed ID: 23232718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome.
    Davidi L; Moraïs S; Artzi L; Knop D; Hadar Y; Arfi Y; Bayer EA
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10854-9. PubMed ID: 27621442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of cellulosome: Research progress and its application in biorefinery.
    Hu BB; Zhu MJ
    Biotechnol Appl Biochem; 2019 Sep; 66(5):720-730. PubMed ID: 31408226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolved xylan inhibits cellulosome-based saccharification by binding to the key cellulosomal component of Clostridium thermocellum.
    Chen C; Qi K; Chi F; Song X; Feng Y; Cui Q; Liu YJ
    Int J Biol Macromol; 2022 May; 207():784-790. PubMed ID: 35351552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate.
    Moraïs S; Barak Y; Hadar Y; Wilson DB; Shoham Y; Lamed R; Bayer EA
    mBio; 2011; 2(6):. PubMed ID: 22086489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of bacterial expansin-like proteins into cellulosome promotes the cellulose degradation.
    Chen C; Cui Z; Song X; Liu YJ; Cui Q; Feng Y
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2203-12. PubMed ID: 26521249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the functionality and stability of designer cellulosomes at elevated temperatures.
    Galanopoulou AP; Moraïs S; Georgoulis A; Morag E; Bayer EA; Hatzinikolaou DG
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8731-43. PubMed ID: 27207145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of scaffoldin mechanostability on cellulosomal activity.
    Galera-Prat A; Vera AM; Moraïs S; Vazana Y; Bayer EA; Carrión-Vázquez M
    Biomater Sci; 2020 Jul; 8(13):3601-3610. PubMed ID: 32232253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium.
    Tomazetto G; Pimentel AC; Wibberg D; Dixon N; Squina FM
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving biomass breakdown through engineered cellulosomes.
    Gilmore SP; Henske JK; O'Malley MA
    Bioengineered; 2015; 6(4):204-8. PubMed ID: 26068180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation.
    Li X; Xiao Y; Feng Y; Li B; Li W; Cui Q
    Enzyme Microb Technol; 2018 Aug; 115():52-61. PubMed ID: 29859603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
    Artzi L; Bayer EA; Moraïs S
    Nat Rev Microbiol; 2017 Feb; 15(2):83-95. PubMed ID: 27941816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does cellulosome composition influence deconstruction of lignocellulosic substrates in
    Yoav S; Barak Y; Shamshoum M; Borovok I; Lamed R; Dassa B; Hadar Y; Morag E; Bayer EA
    Biotechnol Biofuels; 2017; 10():222. PubMed ID: 28932263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordinated β-glucosidase activity with the cellulosome is effective for enhanced lignocellulose saccharification.
    Qi K; Chen C; Yan F; Feng Y; Bayer EA; Kosugi A; Cui Q; Liu YJ
    Bioresour Technol; 2021 Oct; 337():125441. PubMed ID: 34182347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synergistic systems for biodegradations of lignocellulose in microorganisms: a review].
    Liang C; Xue Y; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1327-32. PubMed ID: 21218618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulosome Localization Patterns Vary across Life Stages of Anaerobic Fungi.
    Lillington SP; Chrisler W; Haitjema CH; Gilmore SP; Smallwood CR; Shutthanandan V; Evans JE; O'Malley MA
    mBio; 2021 Jun; 12(3):e0083221. PubMed ID: 34061594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colocalization and Disposition of Cellulosomes in
    Artzi L; Dadosh T; Milrot E; Moraïs S; Levin-Zaidman S; Morag E; Bayer EA
    mBio; 2018 Feb; 9(1):. PubMed ID: 29437917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation Between Size and Activity Enhancement of Recombinantly Assembled Cellulosomes.
    Chen L; Ge X
    Appl Biochem Biotechnol; 2018 Dec; 186(4):937-948. PubMed ID: 29797297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.