BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31288425)

  • 21. Cellulosomal carbohydrate-binding module from Clostridium josui binds to crystalline and non-crystalline cellulose, and soluble polysaccharides.
    Ichikawa S; Karita S; Kondo M; Goto M
    FEBS Lett; 2014 Nov; 588(21):3886-90. PubMed ID: 25217835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass.
    Shinoda S; Kurosaki M; Kokuzawa T; Hirano K; Takano H; Ueda K; Haruki M; Hirano N
    Appl Biochem Biotechnol; 2019 Mar; 187(3):994-1010. PubMed ID: 30136170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes.
    Bae J; Morisaka H; Kuroda K; Ueda M
    J Mol Microbiol Biotechnol; 2013; 23(4-5):370-8. PubMed ID: 23920499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cellulosomal yeast reaction system of lignin-degrading enzymes for cellulosic ethanol fermentation.
    Ye Y; Liu H; Wang Z; Qi Q; Du J; Tian S
    Biotechnol Lett; 2024 Aug; 46(4):531-543. PubMed ID: 38607604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inducing effects of cellulosic hydrolysate components of lignocellulose on cellulosome synthesis in Clostridium thermocellum.
    Li R; Feng Y; Liu S; Qi K; Cui Q; Liu YJ
    Microb Biotechnol; 2018 Sep; 11(5):905-916. PubMed ID: 29943510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain.
    Tachaapaikoon C; Kosugi A; Pason P; Waeonukul R; Ratanakhanokchai K; Kyu KL; Arai T; Murata Y; Mori Y
    Biodegradation; 2012 Feb; 23(1):57-68. PubMed ID: 21637976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex.
    Smith SP; Bayer EA
    Curr Opin Struct Biol; 2013 Oct; 23(5):686-94. PubMed ID: 24080387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses.
    Blouzard JC; Coutinho PM; Fierobe HP; Henrissat B; Lignon S; Tardif C; Pagès S; de Philip P
    Proteomics; 2010 Feb; 10(3):541-54. PubMed ID: 20013800
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion.
    Zhuang H; Lee PH; Wu Z; Jing H; Guan J; Tang X; Tan GA; Leu SY
    Bioresour Technol; 2021 Aug; 333():125148. PubMed ID: 33878497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
    Ortiz de Ora L; Muñoz-Gutiérrez I; Bayer EA; Shoham Y; Lamed R; Borovok I
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome.
    Hirano K; Nihei S; Hasegawa H; Haruki M; Hirano N
    Appl Environ Microbiol; 2015 Jul; 81(14):4756-66. PubMed ID: 25956772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diverse specificity of cellulosome attachment to the bacterial cell surface.
    Brás JL; Pinheiro BA; Cameron K; Cuskin F; Viegas A; Najmudin S; Bule P; Pires VM; Romão MJ; Bayer EA; Spencer HL; Smith S; Gilbert HJ; Alves VD; Carvalho AL; Fontes CM
    Sci Rep; 2016 Dec; 6():38292. PubMed ID: 27924829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly of Ruminococcus flavefaciens cellulosome revealed by structures of two cohesin-dockerin complexes.
    Bule P; Alves VD; Israeli-Ruimy V; Carvalho AL; Ferreira LMA; Smith SP; Gilbert HJ; Najmudin S; Bayer EA; Fontes CMGA
    Sci Rep; 2017 Apr; 7(1):759. PubMed ID: 28389644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation.
    Osiro KO; de Camargo BR; Satomi R; Hamann PR; Silva JP; de Sousa MV; Quirino BF; Aquino EN; Felix CR; Murad AM; Noronha EF
    Enzyme Microb Technol; 2017 Feb; 97():43-54. PubMed ID: 28010772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of lignocellulose degradation in microorganisms.
    Gurovic MSV; Viceconte FR; Bidegain MA; Dietrich J
    J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood.
    Ma CY; Xu LH; Zhang C; Guo KN; Yuan TQ; Wen JL
    Bioresour Technol; 2021 Dec; 341():125828. PubMed ID: 34461401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment.
    Sun Q; Chen WJ; Pang B; Sun Z; Lam SS; Sonne C; Yuan TQ
    Bioresour Technol; 2021 Dec; 341():125807. PubMed ID: 34474237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex.
    You C; Zhang XZ; Sathitsuksanoh N; Lynd LR; Zhang YH
    Appl Environ Microbiol; 2012 Mar; 78(5):1437-44. PubMed ID: 22210210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose hydrolysis ability of a Clostridium thermocellum cellulosome containing small-size scaffolding protein CipA.
    Deng L; Mori Y; Sermsathanaswadi J; Apiwatanapiwat W; Kosugi A
    J Biotechnol; 2015 Oct; 212():144-52. PubMed ID: 26302838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.