BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31288425)

  • 41. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The potential of cellulases and cellulosomes for cellulosic waste management.
    Bayer EA; Lamed R; Himmel ME
    Curr Opin Biotechnol; 2007 Jun; 18(3):237-45. PubMed ID: 17462879
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept.
    Song K; Chu Q; Hu J; Bu Q; Li F; Chen X; Shi A
    Bioresour Technol; 2019 Mar; 276():161-169. PubMed ID: 30623871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.
    Kim D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29389875
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues.
    Leitão VO; Noronha EF; Camargo BR; Hamann PRV; Steindorff AS; Quirino BF; de Sousa MV; Ulhoa CJ; Felix CR
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):825-834. PubMed ID: 28181082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of
    Barth A; Hendrix J; Fried D; Barak Y; Bayer EA; Lamb DC
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11274-E11283. PubMed ID: 30429330
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.
    Lee CC; Kibblewhite RE; Paavola CD; Orts WJ; Wagschal K
    Mol Biotechnol; 2016 Jul; 58(7):489-96. PubMed ID: 27198564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment.
    Ferreira JA; Taherzadeh MJ
    Bioresour Technol; 2020 Mar; 299():122695. PubMed ID: 31918973
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum.
    Zhang P; Wang B; Xiao Q; Wu S
    Bioresour Technol; 2015 Aug; 190():36-43. PubMed ID: 25919935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.
    Li X; Luo X; Li K; Zhu JY; Fougere JD; Clarke K
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1556-67. PubMed ID: 22968589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass.
    Ju X; Engelhard M; Zhang X
    Bioresour Technol; 2013 Mar; 132():137-45. PubMed ID: 23395766
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assembling mini-xylanosomes with Clostridium thermocellum XynA, and their properties in lignocellulose deconstruction.
    Hamann PRV; de M B Silva L; Gomes TC; Noronha EF
    Enzyme Microb Technol; 2021 Oct; 150():109887. PubMed ID: 34489040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides.
    Shoham Y; Lamed R; Bayer EA
    Trends Microbiol; 1999 Jul; 7(7):275-81. PubMed ID: 10390637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cellulosome and cellulose degradation by anaerobic bacteria.
    Schwarz WH
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):634-49. PubMed ID: 11601609
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dissecting the effect of polyethylene glycol on the enzymatic hydrolysis of diverse lignocellulose.
    Li H; Wang C; Xiao W; Yang Y; Hu P; Dai Y; Jiang Z
    Int J Biol Macromol; 2019 Jun; 131():676-681. PubMed ID: 30904528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complexity of the Ruminococcus flavefaciens FD-1 cellulosome reflects an expansion of family-related protein-protein interactions.
    Israeli-Ruimy V; Bule P; Jindou S; Dassa B; Moraïs S; Borovok I; Barak Y; Slutzki M; Hamberg Y; Cardoso V; Alves VD; Najmudin S; White BA; Flint HJ; Gilbert HJ; Lamed R; Fontes CM; Bayer EA
    Sci Rep; 2017 Feb; 7():42355. PubMed ID: 28186207
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial Distribution and Diverse Metabolic Functions of Lignocellulose-Degrading Uncultured Bacteria as Revealed by Genome-Centric Metagenomics.
    Kougias PG; Campanaro S; Treu L; Tsapekos P; Armani A; Angelidaki I
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural organization of the intact bacterial cellulosome as revealed by electron microscopy.
    Madkour M; Mayer F
    Cell Biol Int; 2003; 27(10):831-6. PubMed ID: 14499663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling.
    Mais U; Esteghlalian AR; Saddler JN; Mansfield SD
    Appl Biochem Biotechnol; 2002; 98-100():815-32. PubMed ID: 12018304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.