These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31288425)

  • 61. Compounds inhibiting the bioconversion of hydrothermally pretreated lignocellulose.
    Ko JK; Um Y; Park YC; Seo JH; Kim KH
    Appl Microbiol Biotechnol; 2015 May; 99(10):4201-12. PubMed ID: 25904131
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors.
    Kang S; Barak Y; Lamed R; Bayer EA; Morrison M
    Mol Microbiol; 2006 Jun; 60(6):1344-54. PubMed ID: 16796673
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complex.
    Dykstra AB; St Brice L; Rodriguez M; Raman B; Izquierdo J; Cook KD; Lynd LR; Hettich RL
    J Proteome Res; 2014 Feb; 13(2):692-701. PubMed ID: 24274857
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional and structural properties of a novel cellulosome-like multienzyme complex: efficient glycoside hydrolysis of water-insoluble 7-xylosyl-10-deacetylpaclitaxel.
    Dou TY; Luan HW; Ge GB; Dong MM; Zou HF; He YQ; Cui P; Wang JY; Hao DC; Yang SL; Yang L
    Sci Rep; 2015 Sep; 5():13768. PubMed ID: 26347949
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The binding, synergistic and structural characteristics of BsEXLX1 for loosening the main components of lignocellulose: Lignin, xylan, and cellulose.
    Wang Q; Chen L; Lin H; Yu D; Shen Q; Wan L; Zhao Y
    Enzyme Microb Technol; 2016 Oct; 92():67-75. PubMed ID: 27542746
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions.
    Waeonukul R; Kyu KL; Sakka K; Ratanakhanokchai K
    J Biosci Bioeng; 2009 Jun; 107(6):610-4. PubMed ID: 19447336
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cellulosic ethanol production: Progress, challenges and strategies for solutions.
    Liu CG; Xiao Y; Xia XX; Zhao XQ; Peng L; Srinophakun P; Bai FW
    Biotechnol Adv; 2019; 37(3):491-504. PubMed ID: 30849432
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol.
    Xu C; Qin Y; Li Y; Ji Y; Huang J; Song H; Xu J
    Bioresour Technol; 2010 Dec; 101(24):9560-9. PubMed ID: 20702089
    [TBL] [Abstract][Full Text] [Related]  

  • 69. HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis.
    Sun Q; Chen W
    Chem Commun (Camb); 2016 May; 52(40):6701-4. PubMed ID: 27117678
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity.
    Doi RH; Tamaru Y
    Chem Rec; 2001; 1(1):24-32. PubMed ID: 11893054
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids.
    Zhao H; Baker GA; Cowins JV
    Biotechnol Prog; 2010; 26(1):127-33. PubMed ID: 19918908
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics.
    Berlin A; Gilkes N; Kurabi A; Bura R; Tu M; Kilburn D; Saddler J
    Appl Biochem Biotechnol; 2005; 121-124():163-70. PubMed ID: 15917596
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.
    Palazzolo MA; Kurina-Sanz M
    World J Microbiol Biotechnol; 2016 Oct; 32(10):173. PubMed ID: 27565783
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens.
    Weinstein JY; Slutzki M; Karpol A; Barak Y; Gul O; Lamed R; Bayer EA; Fried DB
    J Mol Recognit; 2015 Mar; 28(3):148-54. PubMed ID: 25639797
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome.
    Bensoussan L; Moraïs S; Dassa B; Friedman N; Henrissat B; Lombard V; Bayer EA; Mizrahi I
    Environ Microbiol; 2017 Jan; 19(1):185-197. PubMed ID: 27712009
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Functional display of complex cellulosomes on the yeast surface via adaptive assembly.
    Tsai SL; DaSilva NA; Chen W
    ACS Synth Biol; 2013 Jan; 2(1):14-21. PubMed ID: 23656322
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens.
    Jindou S; Borovok I; Rincon MT; Flint HJ; Antonopoulos DA; Berg ME; White BA; Bayer EA; Lamed R
    J Bacteriol; 2006 Nov; 188(22):7971-6. PubMed ID: 16997963
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex.
    Adams JJ; Pal G; Jia Z; Smith SP
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):305-10. PubMed ID: 16384918
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Methods for Discovery of Novel Cellulosomal Cellulases Using Genomics and Biochemical Tools.
    Ben-David Y; Dassa B; Bensoussan L; Bayer EA; Moraïs S
    Methods Mol Biol; 2018; 1796():67-84. PubMed ID: 29856047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.