BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31288428)

  • 1. A Blood Flow Volume Linear Inversion Model Based on Electromagnetic Sensor for Predicting the Rate of Arterial Stenosis.
    Yang D; Liu YJ; Xu B; Duo YH
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31288428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Linear Gradient Magnetic Field in Arterial Profile Scanning Imaging.
    Liu Y; Liu G; Yang D; Xu B
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823785
    [No Abstract]   [Full Text] [Related]  

  • 3. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.
    Tripathi J; Vasu B; Bég OA; Mounika BR; Gorla RSR
    Microvasc Res; 2022 Jan; 139():104241. PubMed ID: 34508788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of spiral blood flow in a model of arterial stenosis.
    Paul MC; Larman A
    Med Eng Phys; 2009 Nov; 31(9):1195-203. PubMed ID: 19674925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Neural Network Method for Arterial Blood Flow Profile Reconstruction.
    Yang D; Wang Y; Xu B; Wang X; Liu Y; Cheng T
    Entropy (Basel); 2021 Aug; 23(9):. PubMed ID: 34573739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new formula for predicting the position of severe arterial stenosis.
    Abdessalem KB; Saleh RB
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1096-1103. PubMed ID: 28553724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery.
    Bathe M; Kamm RD
    J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Stenotic Geometry and Non-newtonian Property of Blood Flow through Arterial Stenosis.
    Sriyab S
    Cardiovasc Hematol Disord Drug Targets; 2020; 20(1):16-30. PubMed ID: 31072297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow in arteries in the presence of stenosis.
    Misra JC; Chakravarty S
    J Biomech; 1986; 19(11):907-18. PubMed ID: 3793739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical analysis of blood flow through a stenosed artery using a coupled, multiscale simulation method.
    Shim EB; Kamm RD; Heldt T; Mark RG
    Comput Cardiol; 2000; 27():219-22. PubMed ID: 12085933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of steady cardiovascular flow in the presence of stenosis using a finite element method.
    Sud VK; Sekhon GS
    Phys Med Biol; 1990 Jul; 35(7):947-59. PubMed ID: 2385625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts.
    Steele BN; Wan J; Ku JP; Hughes TJ; Taylor CA
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):649-56. PubMed ID: 12814231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic evaluation of arterial stenoses by computer simulation.
    Kandarpa K; Davids N; Gardiner GA; Harrington DP; Selwyn A; Levin DC
    Invest Radiol; 1987 May; 22(5):393-403. PubMed ID: 3597007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries.
    Spilker RL; Feinstein JA; Parker DW; Reddy VM; Taylor CA
    Ann Biomed Eng; 2007 Apr; 35(4):546-59. PubMed ID: 17294117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite-element model of blood flow in arteries including taper, branches, and obstructions.
    Porenta G; Young DF; Rogge TR
    J Biomech Eng; 1986 May; 108(2):161-7. PubMed ID: 3724104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.