BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31288470)

  • 1. Multiply Interpenetrating Polymer Networks: Preparation, Mechanical Properties, and Applications.
    Panteli PA; Patrickios CS
    Gels; 2019 Jul; 5(3):. PubMed ID: 31288470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering.
    Crosby CO; Stern B; Kalkunte N; Pedahzur S; Ramesh S; Zoldan J
    Rev Chem Eng; 2022 Apr; 38(3):347-361. PubMed ID: 35400772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials.
    Bai H; Li Z; Zhang S; Wang W; Dong W
    Carbohydr Polym; 2018 Nov; 200():468-476. PubMed ID: 30177188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphates-Containing Interpenetrating Polymer Networks (IPNs) Acting as Slow Release Fertilizer Hydrogels (SRFHs) Suitable for Agricultural Applications.
    Lipowczan A; Trochimczuk AW
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.
    Xu Y; Ghag O; Reimann M; Sitterle P; Chatterjee P; Nofen E; Yu H; Jiang H; Dai LL
    Soft Matter; 2017 Dec; 14(1):151-160. PubMed ID: 29226931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release of therapeutics using interpenetrating polymeric networks.
    Aminabhavi TM; Nadagouda MN; More UA; Joshi SD; Kulkarni VH; Noolvi MN; Kulkarni PV
    Expert Opin Drug Deliv; 2015 Apr; 12(4):669-88. PubMed ID: 25341410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue.
    Feig VR; Tran H; Lee M; Bao Z
    Nat Commun; 2018 Jul; 9(1):2740. PubMed ID: 30013027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoS
    Lee KM; Jeong S; Park J; Kim H
    ACS Omega; 2021 Oct; 6(39):25623-25630. PubMed ID: 34632218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous One-Pot Interpenetrating Network Formation to Expand 3D Processing Capabilities.
    Dhand AP; Davidson MD; Galarraga JH; Qazi TH; Locke RC; Mauck RL; Burdick JA
    Adv Mater; 2022 Jul; 34(28):e2202261. PubMed ID: 35510317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of PNIPAM based hydrogels: A review.
    Haq MA; Su Y; Wang D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):842-855. PubMed ID: 27770962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable growth of interpenetrating or random copolymer networks.
    Chatterjee R; Biswas S; Yashin VV; Aizenberg M; Aizenberg J; Balazs AC
    Soft Matter; 2021 Aug; 17(30):7177-7187. PubMed ID: 34268552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a semi-interpenetrating constructed xylan-based hydrogel with superior compressive strength, resilience, and creep recovery abilities.
    Han T; Song T; Pranovich A; Rojas OJ
    Carbohydr Polym; 2022 Oct; 294():119772. PubMed ID: 35868790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications.
    Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA
    Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-interpenetrating chitosan/ionic liquid polymer networks as electro-responsive biomaterials for potential wound dressings and iontophoretic applications.
    Kanaan AF; Piedade AP; de Sousa HC; Dias AMA
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111798. PubMed ID: 33579445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review on the COVID-19 vaccine and drug delivery applications of interpenetrating polymer networks.
    Aldaais EA
    Drug Deliv Transl Res; 2023 Mar; 13(3):738-756. PubMed ID: 36443634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering interpenetrating network hydrogels as biomimetic cell niche with independently tunable biochemical and mechanical properties.
    Tong X; Yang F
    Biomaterials; 2014 Feb; 35(6):1807-15. PubMed ID: 24331710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of interpenetrating polymer networks associating fibrin and silk fibroin networks obtained by a double enzymatic method.
    Goczkowski M; Gobin M; HindiƩ M; Agniel R; Larreta-Garde V
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109931. PubMed ID: 31499978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.
    Madaghiele M; Marotta F; Demitri C; Montagna F; Maffezzoli A; Sannino A
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):183-92. PubMed ID: 24700267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.