These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31288593)

  • 41. Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation.
    Koepff J; Keller M; Tsolis KC; Busche T; Rückert C; Hamed MB; Anné J; Kalinowski J; Wiechert W; Economou A; Oldiges M
    Biotechnol Bioeng; 2017 Sep; 114(9):2011-2022. PubMed ID: 28436005
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Replication methods and tools in high-throughput cultivation processes - recognizing potential variations of growth and product formation by on-line monitoring.
    Huber R; Palmen TG; Ryk N; Hillmer AK; Luft K; Kensy F; Büchs J
    BMC Biotechnol; 2010 Mar; 10():22. PubMed ID: 20233443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An automated microscale platform for evaluation and optimization of oxidative bioconversion processes.
    Baboo JZ; Galman JL; Lye GJ; Ward JM; Hailes HC; Micheletti M
    Biotechnol Prog; 2012; 28(2):392-405. PubMed ID: 22223589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.
    Schmideder A; Severin TS; Cremer JH; Weuster-Botz D
    J Biotechnol; 2015 Sep; 210():19-24. PubMed ID: 26116137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methods and milliliter scale devices for high-throughput bioprocess design.
    Weuster-Botz D; Puskeiler R; Kusterer A; Kaufmann K; John GT; Arnold M
    Bioprocess Biosyst Eng; 2005 Nov; 28(2):109-19. PubMed ID: 16049713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask.
    Philip P; Meier K; Kern D; Goldmanns J; Stockmeier F; Bähr C; Büchs J
    Microb Cell Fact; 2017 Jul; 16(1):122. PubMed ID: 28716035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of a novel membrane aerated hollow-fiber microbioreactor.
    Villain L; Meyer L; Kroll S; Beutel S; Scheper T
    Biotechnol Prog; 2008; 24(2):367-71. PubMed ID: 18386917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A fully automated pipeline for the dynamic at-line morphology analysis of microscale Aspergillus cultivation.
    Jansen R; Küsters K; Morschett H; Wiechert W; Oldiges M
    Fungal Biol Biotechnol; 2021 Mar; 8(1):2. PubMed ID: 33676585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control.
    Lee HL; Boccazzi P; Ram RJ; Sinskey AJ
    Lab Chip; 2006 Sep; 6(9):1229-35. PubMed ID: 16929403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-throughput microbioreactor provides a capable tool for early stage bioprocess development.
    Fink M; Cserjan-Puschmann M; Reinisch D; Striedner G
    Sci Rep; 2021 Jan; 11(1):2056. PubMed ID: 33479431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: design of milliliter scale-down bioreactors.
    Brognaux A; Thonart P; Delvigne F; Neubauer P; Twizere JC; Francis F; Gorret N
    Biotechnol Prog; 2013; 29(1):48-59. PubMed ID: 23124973
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automatic liquid handling for life science: a critical review of the current state of the art.
    Kong F; Yuan L; Zheng YF; Chen W
    J Lab Autom; 2012 Jun; 17(3):169-85. PubMed ID: 22357568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Edwin.
    de Las Heras A; Xiao W; Sren V; Elfick A
    SLAS Technol; 2017 Feb; 22(1):50-62. PubMed ID: 27316463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microbioreactor-assisted cultivation workflows for time-efficient phenotyping of protein producing Aspergillus niger in batch and fed-batch mode.
    Jansen R; Morschett H; Hasenklever D; Moch M; Wiechert W; Oldiges M
    Biotechnol Prog; 2021 Jul; 37(4):e3144. PubMed ID: 33745237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The development and application of high throughput cultivation technology in bioprocess development.
    Long Q; Liu X; Yang Y; Li L; Harvey L; McNeil B; Bai Z
    J Biotechnol; 2014 Dec; 192 Pt B():323-38. PubMed ID: 24698846
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.
    Morschett H; Wiechert W; Oldiges M
    Microb Cell Fact; 2016 Feb; 15():34. PubMed ID: 26861538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glucose-Limited Fed-Batch Cultivation Strategy to Mimic Large-Scale Effects in
    García ÁC; Hauptmann P; Neubauer P
    Microorganisms; 2021 May; 9(6):. PubMed ID: 34063744
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of High-Throughput Automated Microbioreactor System for Production of Model IgG1 in CHO Cells.
    Velugula-Yellela SR; Kohnhorst C; Powers DN; Trunfio N; Faustino A; Angart P; Berilla E; Faison T; Agarabi C
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30320757
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells.
    Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST
    Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of power consumption and oxygen transfer characteristics of a stirred miniature bioreactor for predictive fermentation scale-up.
    Gill NK; Appleton M; Baganz F; Lye GJ
    Biotechnol Bioeng; 2008 Aug; 100(6):1144-55. PubMed ID: 18404769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.