BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31288637)

  • 1. Deep learning with evolutionary and genomic profiles for identifying cancer subtypes.
    Lin CY; Ruan P; Li R; Yang JM; See S; Song J; Akutsu T
    J Bioinform Comput Biol; 2019 Jun; 17(3):1940005. PubMed ID: 31288637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convolutional neural network models for cancer type prediction based on gene expression.
    Mostavi M; Chiu YC; Huang Y; Chen Y
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):44. PubMed ID: 32241303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural networks and Fuzzy clustering methods for assessing the efficacy of microarray based intrinsic gene signatures in breast cancer classification and the character and relations of identified subtypes.
    Samarasinghe S; Chaiboonchoe A
    Methods Mol Biol; 2015; 1260():285-317. PubMed ID: 25502389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Integrative Approach for Identifying Network Biomarkers of Breast Cancer Subtypes Using Genomic, Interactomic, and Transcriptomic Data.
    Firoozbakht F; Rezaeian I; D'agnillo M; Porter L; Rueda L; Ngom A
    J Comput Biol; 2017 Aug; 24(8):756-766. PubMed ID: 28650678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer.
    Lee G; Bang L; Kim SY; Kim D; Sohn KA
    BMC Med Genomics; 2017 May; 10(Suppl 1):28. PubMed ID: 28589855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning identified glioblastoma subtypes based on internal genomic expression ranks.
    Mao XG; Xue XY; Wang L; Lin W; Zhang X
    BMC Cancer; 2022 Jan; 22(1):86. PubMed ID: 35057766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA signatures highlight new breast cancer subtypes.
    Bhattacharyya M; Nath J; Bandyopadhyay S
    Gene; 2015 Feb; 556(2):192-8. PubMed ID: 25485717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
    Sundaramurthy G; Eghbalnia HR
    Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico markers: an evolutionary and statistical approach to select informative genes of human breast cancer subtypes.
    Bhowmick SS; Bhattacharjee D; Rato L
    Genes Genomics; 2019 Dec; 41(12):1371-1382. PubMed ID: 31004329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring microRNA Regulation of Cancer with Context-Aware Deep Cancer Classifier.
    Pyman B; Sedghi A; Azizi S; Tyryshkin K; Renwick N; Mousavi P
    Pac Symp Biocomput; 2019; 24():160-171. PubMed ID: 30864319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images.
    Noorbakhsh J; Farahmand S; Foroughi Pour A; Namburi S; Caruana D; Rimm D; Soltanieh-Ha M; Zarringhalam K; Chuang JH
    Nat Commun; 2020 Dec; 11(1):6367. PubMed ID: 33311458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Novel Breast Cancer Subtype-Specific Biomarkers by Integrating Genomics Analysis of DNA Copy Number Aberrations and miRNA-mRNA Dual Expression Profiling.
    Li D; Xia H; Li ZY; Hua L; Li L
    Biomed Res Int; 2015; 2015():746970. PubMed ID: 25961039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer.
    Naorem LD; Muthaiyan M; Venkatesan A
    J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Drug Combination Prediction by Integrating Multiomics Data in Deep Learning Models.
    Zhang T; Zhang L; Payne PRO; Li F
    Methods Mol Biol; 2021; 2194():223-238. PubMed ID: 32926369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying common transcriptome signatures of cancer by interpreting deep learning models.
    Jha A; Quesnel-Vallières M; Wang D; Thomas-Tikhonenko A; Lynch KW; Barash Y
    Genome Biol; 2022 May; 23(1):117. PubMed ID: 35581644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing deep belief networks with support vector machines for classifying gene expression data from complex disorders.
    Smolander J; Dehmer M; Emmert-Streib F
    FEBS Open Bio; 2019 Jul; 9(7):1232-1248. PubMed ID: 31074948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.
    Guo Y; Liu S; Li Z; Shang X
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):118. PubMed ID: 29671390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome.
    Azarkhalili B; Saberi A; Chitsaz H; Sharifi-Zarchi A
    Sci Rep; 2019 Nov; 9(1):16526. PubMed ID: 31712594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups.
    Netanely D; Avraham A; Ben-Baruch A; Evron E; Shamir R
    Breast Cancer Res; 2016 Jul; 18(1):74. PubMed ID: 27386846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.