These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 31288818)
21. A keyphrase-based approach for interpretable ICD-10 code classification of Spanish medical reports. Duque A; Fabregat H; Araujo L; Martinez-Romo J Artif Intell Med; 2021 Nov; 121():102177. PubMed ID: 34763812 [TBL] [Abstract][Full Text] [Related]
22. Development of a Method for Automatic Matching of Unstructured Medical Data to ICD-10 Codes. Volkov B; Kopanitsa G Stud Health Technol Inform; 2024 May; 314():93-97. PubMed ID: 38785010 [TBL] [Abstract][Full Text] [Related]
23. Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical records. Vyas A; Aisopos F; Vidal ME; Garrard P; Paliouras G BMC Med Inform Decis Mak; 2022 Oct; 22(1):271. PubMed ID: 36253849 [TBL] [Abstract][Full Text] [Related]
24. Relational machine learning for electronic health record-driven phenotyping. Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351 [TBL] [Abstract][Full Text] [Related]
25. A method for cohort selection of cardiovascular disease records from an electronic health record system. Abrahão MTF; Nobre MRC; Gutierrez MA Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342 [TBL] [Abstract][Full Text] [Related]
26. Automated feature selection of predictors in electronic medical records data. Gronsbell J; Minnier J; Yu S; Liao K; Cai T Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541 [TBL] [Abstract][Full Text] [Related]
27. Developing and Validating Methods to Assemble Systemic Lupus Erythematosus Births in the Electronic Health Record. Barnado A; Eudy AM; Blaske A; Wheless L; Kirchoff K; Oates JC; Clowse MEB Arthritis Care Res (Hoboken); 2022 May; 74(5):849-857. PubMed ID: 33253488 [TBL] [Abstract][Full Text] [Related]
28. Identifying Patients with Rare Disease Using Electronic Health Record Data: The Kaiser Permanente Southern California Membranous Nephropathy Cohort. Sun AZ; Shu YH; Harrison TN; Hever A; Jacobsen SJ; O'Shaughnessy MM; Sim JJ Perm J; 2020; 24():. PubMed ID: 32069207 [TBL] [Abstract][Full Text] [Related]
29. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study. Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455 [TBL] [Abstract][Full Text] [Related]
30. Using ICD-9 diagnostic codes for external validation of topic models derived from primary care electronic medical record clinical text data. Meaney C; Escobar M; Stukel TA; Austin PC; Kalia S; Aliarzadeh B; Rahim Moineddin ; Greiver M Health Informatics J; 2023; 29(1):14604582221115667. PubMed ID: 36639910 [No Abstract] [Full Text] [Related]
31. Combining billing codes, clinical notes, and medications from electronic health records provides superior phenotyping performance. Wei WQ; Teixeira PL; Mo H; Cronin RM; Warner JL; Denny JC J Am Med Inform Assoc; 2016 Apr; 23(e1):e20-7. PubMed ID: 26338219 [TBL] [Abstract][Full Text] [Related]
32. Automated detection of substance use information from electronic health records for a pediatric population. Ni Y; Bachtel A; Nause K; Beal S J Am Med Inform Assoc; 2021 Sep; 28(10):2116-2127. PubMed ID: 34333636 [TBL] [Abstract][Full Text] [Related]
34. Combining structured and unstructured data for predictive models: a deep learning approach. Zhang D; Yin C; Zeng J; Yuan X; Zhang P BMC Med Inform Decis Mak; 2020 Oct; 20(1):280. PubMed ID: 33121479 [TBL] [Abstract][Full Text] [Related]
35. Building bridges across electronic health record systems through inferred phenotypic topics. Chen Y; Ghosh J; Bejan CA; Gunter CA; Gupta S; Kho A; Liebovitz D; Sun J; Denny J; Malin B J Biomed Inform; 2015 Jun; 55():82-93. PubMed ID: 25841328 [TBL] [Abstract][Full Text] [Related]
36. Selection of Clinical Text Features for Classifying Suicide Attempts. Buckland RS; Hogan JW; Chen ES AMIA Annu Symp Proc; 2020; 2020():273-282. PubMed ID: 33936399 [TBL] [Abstract][Full Text] [Related]
37. Identification of Incident Atrial Fibrillation From Electronic Medical Records. Chamberlain AM; Roger VL; Noseworthy PA; Chen LY; Weston SA; Jiang R; Alonso A J Am Heart Assoc; 2022 Apr; 11(7):e023237. PubMed ID: 35348008 [TBL] [Abstract][Full Text] [Related]
38. Supervised Text Classification System Detects Fontan Patients in Electronic Records With Higher Accuracy Than Guo Y; Al-Garadi MA; Book WM; Ivey LC; Rodriguez FH; Raskind-Hood CL; Robichaux C; Sarker A J Am Heart Assoc; 2023 Jul; 12(13):e030046. PubMed ID: 37345821 [TBL] [Abstract][Full Text] [Related]
39. Applying interpretable deep learning models to identify chronic cough patients using EHR data. Luo X; Gandhi P; Zhang Z; Shao W; Han Z; Chandrasekaran V; Turzhitsky V; Bali V; Roberts AR; Metzger M; Baker J; La Rosa C; Weaver J; Dexter P; Huang K Comput Methods Programs Biomed; 2021 Oct; 210():106395. PubMed ID: 34525412 [TBL] [Abstract][Full Text] [Related]
40. Comparing Machine Learning to Regression Methods for Mortality Prediction Using Veterans Affairs Electronic Health Record Clinical Data. Jing B; Boscardin WJ; Deardorff WJ; Jeon SY; Lee AK; Donovan AL; Lee SJ Med Care; 2022 Jun; 60(6):470-479. PubMed ID: 35352701 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]