BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31289013)

  • 1. Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization.
    Lorenz R; Simmons LE; Monti RP; Arthur JL; Limal S; Laakso I; Leech R; Violante IR
    Brain Stimul; 2019; 12(6):1484-1489. PubMed ID: 31289013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-dependent and montage-based differences in phosphene perception thresholds via transcranial alternating current stimulation.
    Evans ID; Palmisano S; Loughran SP; Legros A; Croft RJ
    Bioelectromagnetics; 2019 Sep; 40(6):365-374. PubMed ID: 31338856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects.
    Indahlastari A; Kasinadhuni AK; Saar C; Castellano K; Mousa B; Chauhan M; Mareci TH; Sadleir RJ
    Neural Plast; 2018; 2018():8525706. PubMed ID: 30627150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphene Attributes Depend on Frequency and Intensity of Retinal tACS.
    Kvašňák E; Orendáčová M; Vránová J
    Physiol Res; 2022 Aug; 71(4):561-571. PubMed ID: 35770470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude modulating frequency overrides carrier frequency in tACS-induced phosphene percept.
    Hsu CY; Liu TL; Lee DH; Yeh DR; Chen YH; Liang WK; Juan CH
    Hum Brain Mapp; 2023 Feb; 44(3):914-926. PubMed ID: 36250439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurosensory effects of transcranial alternating current stimulation.
    Raco V; Bauer R; Olenik M; Brkic D; Gharabaghi A
    Brain Stimul; 2014; 7(6):823-31. PubMed ID: 25442154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes.
    Laakso I; Hirata A
    J Neural Eng; 2013 Aug; 10(4):046009. PubMed ID: 23813466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude modulated transcranial alternating current stimulation (AM-TACS) efficacy evaluation via phosphene induction.
    Thiele C; Zaehle T; Haghikia A; Ruhnau P
    Sci Rep; 2021 Nov; 11(1):22245. PubMed ID: 34782626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the montage for cerebellar transcranial alternating current stimulation (tACS): a combined computational and experimental study.
    Sadeghihassanabadi F; Misselhorn J; Gerloff C; Zittel S
    J Neural Eng; 2022 May; 19(2):. PubMed ID: 35421852
    [No Abstract]   [Full Text] [Related]  

  • 10. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review.
    Schutter DJ
    Neuroimage; 2016 Oct; 140():83-8. PubMed ID: 26453929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal origin of phosphenes to transcranial alternating current stimulation.
    Schutter DJ; Hortensius R
    Clin Neurophysiol; 2010 Jul; 121(7):1080-4. PubMed ID: 20188625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation.
    Turi Z; Ambrus GG; Janacsek K; Emmert K; Hahn L; Paulus W; Antal A
    Restor Neurol Neurosci; 2013; 31(3):275-85. PubMed ID: 23478342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting alpha-band oscillations in a cortical model with amplitude-modulated high-frequency transcranial electric stimulation.
    Negahbani E; Kasten FH; Herrmann CS; Fröhlich F
    Neuroimage; 2018 Jun; 173():3-12. PubMed ID: 29427848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects for transcranial temporal interference stimulation in humans: A computational study.
    Rampersad S; Roig-Solvas B; Yarossi M; Kulkarni PP; Santarnecchi E; Dorval AD; Brooks DH
    Neuroimage; 2019 Nov; 202():116124. PubMed ID: 31473351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized brain stimulation for effective neurointervention across participants.
    van Bueren NER; Reed TL; Nguyen V; Sheffield JG; van der Ven SHG; Osborne MA; Kroesbergen EH; Cohen Kadosh R
    PLoS Comput Biol; 2021 Sep; 17(9):e1008886. PubMed ID: 34499639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-Term Memory Generalization by Modulating Endogenous Oscillations.
    Ketz N; Jones AP; Bryant NB; Clark VP; Pilly PK
    J Neurosci; 2018 Aug; 38(33):7314-7326. PubMed ID: 30037830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial alternating current stimulation reveals atypical 40 Hz phosphene thresholds in synaesthesia.
    Terhune DB; Song SM; Cohen Kadosh R
    Cortex; 2015 Feb; 63():267-70. PubMed ID: 25303273
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluating Current Density Modeling of Non-Invasive Eye and Brain Electrical Stimulation Using Phosphene Thresholds.
    Sabel BA; Kresinsky A; Cardenas-Morales L; Haueisen J; Hunold A; Dannhauer M; Antal A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2133-2141. PubMed ID: 34648453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the effects of transcranial alternating current stimulation (tACS) on self-paced rhythmic movements.
    Varlet M; Wade A; Novembre G; Keller PE
    Neuroscience; 2017 May; 350():75-84. PubMed ID: 28323009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.