These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31289234)

  • 1. The optoelectronic microrobot: A versatile toolbox for micromanipulation.
    Zhang S; Scott EY; Singh J; Chen Y; Zhang Y; Elsayed M; Chamberlain MD; Shakiba N; Adams K; Yu S; Morshead CM; Zandstra PW; Wheeler AR
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):14823-14828. PubMed ID: 31289234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells.
    Neale SL; Ohta AT; Hsu HY; Valley JK; Jamshidi A; Wu MC
    Opt Express; 2009 Mar; 17(7):5232-9. PubMed ID: 19333286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated transportation of single cells using robot-tweezer manipulation system.
    Hu S; Sun D
    J Lab Autom; 2011 Aug; 16(4):263-70. PubMed ID: 21764021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval.
    Gan C; Zhang J; Chen B; Wang A; Xiong H; Zhao J; Wang C; Liang S; Feng L
    Small; 2024 Jun; 20(23):e2307329. PubMed ID: 38509856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned Optoelectronic Tweezers: A New Scheme for Selecting, Moving, and Storing Dielectric Particles and Cells.
    Zhang S; Shakiba N; Chen Y; Zhang Y; Tian P; Singh J; Chamberlain MD; Satkauskas M; Flood AG; Kherani NP; Yu S; Zandstra PW; Wheeler AR
    Small; 2018 Nov; 14(45):e1803342. PubMed ID: 30307718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media.
    Hsu HY; Ohta AT; Chiou PY; Jamshidi A; Neale SL; Wu MC
    Lab Chip; 2010 Jan; 10(2):165-72. PubMed ID: 20066243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetically driven microrobotic system for cancer cell manipulation.
    Lucarini G; Iacovacci V; Ricotti L; Comisso N; Dario P; Menciassi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3631-4. PubMed ID: 26737079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation.
    Jager EW; Inganäs O; Lundström I
    Science; 2000 Jun; 288(5475):2335-8. PubMed ID: 10875911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optoelectronic tweezers: a versatile toolbox for nano-/micro-manipulation.
    Zhang S; Xu B; Elsayed M; Nan F; Liang W; Valley JK; Liu L; Huang Q; Wu MC; Wheeler AR
    Chem Soc Rev; 2022 Nov; 51(22):9203-9242. PubMed ID: 36285556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Massively parallel manipulation of single cells and microparticles using optical images.
    Chiou PY; Ohta AT; Wu MC
    Nature; 2005 Jul; 436(7049):370-2. PubMed ID: 16034413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optoelectronic tweezers system for single cell manipulation and fluorescence imaging of live immune cells.
    Jeorrett AH; Neale SL; Massoubre D; Gu E; Henderson RK; Millington O; Mathieson K; Dawson MD
    Opt Express; 2014 Jan; 22(2):1372-80. PubMed ID: 24515144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media.
    Yang Y; Mao Y; Shin KS; Chui CO; Chiou PY
    Sci Rep; 2016 Mar; 6():22630. PubMed ID: 26940301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational and rotational manipulation of filamentous cells using optically driven microrobots.
    Hu S; Hu R; Dong X; Wei T; Chen S; Sun D
    Opt Express; 2019 Jun; 27(12):16475-16482. PubMed ID: 31252872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart microrobots for mechanical cell characterization and cell convoying.
    Boukallel M; Gauthier M; Dauge M; Piat E; Abadie J
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1536-40. PubMed ID: 17694877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Path Tracking and Target Manipulation of a Magnetic Microrobot.
    Wang J; Jiao N; Tung S; Liu L
    Micromachines (Basel); 2016 Nov; 7(11):. PubMed ID: 30404383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation.
    Iványi GT; Nemes B; Gróf I; Fekete T; Kubacková J; Tomori Z; Bánó G; Vizsnyiczai G; Kelemen L
    Adv Mater; 2024 Aug; 36(32):e2401115. PubMed ID: 38814436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.
    Yang SM; Yu TM; Huang HP; Ku MY; Hsu L; Liu CH
    Opt Lett; 2010 Jun; 35(12):1959-61. PubMed ID: 20548352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments.
    Chen H; Wang C; Lou Y
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1518-27. PubMed ID: 23380840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation.
    Breukers J; Horta S; Struyfs C; Spasic D; Feys HB; Geukens N; Thevissen K; Cammue BPA; Vanhoorelbeke K; Lammertyn J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2316-2326. PubMed ID: 33411502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.