These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31289270)

  • 1. A genome-wide scan statistic framework for whole-genome sequence data analysis.
    He Z; Xu B; Buxbaum J; Ionita-Laza I
    Nat Commun; 2019 Jul; 10(1):3018. PubMed ID: 31289270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-localization between Sequence Constraint and Epigenomic Information Improves Interpretation of Whole-Genome Sequencing Data.
    Xu D; Wang C; Kiryluk K; Buxbaum JD; Ionita-Laza I
    Am J Hum Genet; 2020 Apr; 106(4):513-524. PubMed ID: 32243819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of putative causal loci in whole-genome sequencing data via knockoff statistics.
    He Z; Liu L; Wang C; Le Guen Y; Lee J; Gogarten S; Lu F; Montgomery S; Tang H; Silverman EK; Cho MH; Greicius M; Ionita-Laza I
    Nat Commun; 2021 May; 12(1):3152. PubMed ID: 34035245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CWAS-Plus: estimating category-wide association of rare noncoding variation from whole-genome sequencing data with cell-type-specific functional data.
    Kim Y; Jeong M; Koh IG; Kim C; Lee H; Kim JH; Yurko R; Kim IB; Park J; Werling DM; Sanders SJ; An JY
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38966948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder.
    Werling DM; Brand H; An JY; Stone MR; Zhu L; Glessner JT; Collins RL; Dong S; Layer RM; Markenscoff-Papadimitriou E; Farrell A; Schwartz GB; Wang HZ; Currall BB; Zhao X; Dea J; Duhn C; Erdman CA; Gilson MC; Yadav R; Handsaker RE; Kashin S; Klei L; Mandell JD; Nowakowski TJ; Liu Y; Pochareddy S; Smith L; Walker MF; Waterman MJ; He X; Kriegstein AR; Rubenstein JL; Sestan N; McCarroll SA; Neale BM; Coon H; Willsey AJ; Buxbaum JD; Daly MJ; State MW; Quinlan AR; Marth GT; Roeder K; Devlin B; Talkowski ME; Sanders SJ
    Nat Genet; 2018 Apr; 50(5):727-736. PubMed ID: 29700473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-Wide Changes in Protein Translation Efficiency Are Associated with Autism.
    Rogozin IB; Gertz EM; Baranov PV; Poliakov E; Schaffer AA
    Genome Biol Evol; 2018 Aug; 10(8):1902-1919. PubMed ID: 29986017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genome-wide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity?
    Chaste P; Klei L; Sanders SJ; Hus V; Murtha MT; Lowe JK; Willsey AJ; Moreno-De-Luca D; Yu TW; Fombonne E; Geschwind D; Grice DE; Ledbetter DH; Mane SM; Martin DM; Morrow EM; Walsh CA; Sutcliffe JS; Lese Martin C; Beaudet AL; Lord C; State MW; Cook EH; Devlin B
    Biol Psychiatry; 2015 May; 77(9):775-84. PubMed ID: 25534755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-Genome Sequencing Studies.
    Li Z; Li X; Liu Y; Shen J; Chen H; Zhou H; Morrison AC; Boerwinkle E; Lin X
    Am J Hum Genet; 2019 May; 104(5):802-814. PubMed ID: 30982610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association analysis of autism identified multiple loci that have been reported as strong signals for neuropsychiatric disorders.
    Xia L; Ou J; Li K; Guo H; Hu Z; Bai T; Zhao J; Xia K; Zhang F
    Autism Res; 2020 Mar; 13(3):382-396. PubMed ID: 31647196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating genome-wide significance for whole-genome sequencing studies.
    Xu C; Tachmazidou I; Walter K; Ciampi A; Zeggini E; Greenwood CM;
    Genet Epidemiol; 2014 May; 38(4):281-90. PubMed ID: 24676807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for detecting noncoding rare-variant associations of large-scale whole-genome sequencing studies.
    Li Z; Li X; Zhou H; Gaynor SM; Selvaraj MS; Arapoglou T; Quick C; Liu Y; Chen H; Sun R; Dey R; Arnett DK; Auer PL; Bielak LF; Bis JC; Blackwell TW; Blangero J; Boerwinkle E; Bowden DW; Brody JA; Cade BE; Conomos MP; Correa A; Cupples LA; Curran JE; de Vries PS; Duggirala R; Franceschini N; Freedman BI; Göring HHH; Guo X; Kalyani RR; Kooperberg C; Kral BG; Lange LA; Lin BM; Manichaikul A; Manning AK; Martin LW; Mathias RA; Meigs JB; Mitchell BD; Montasser ME; Morrison AC; Naseri T; O'Connell JR; Palmer ND; Peyser PA; Psaty BM; Raffield LM; Redline S; Reiner AP; Reupena MS; Rice KM; Rich SS; Smith JA; Taylor KD; Taub MA; Vasan RS; Weeks DE; Wilson JG; Yanek LR; Zhao W; ; ; Rotter JI; Willer CJ; Natarajan P; Peloso GM; Lin X
    Nat Methods; 2022 Dec; 19(12):1599-1611. PubMed ID: 36303018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.
    Luo L; Zhu Y; Xiong M
    J Comput Biol; 2012 Jun; 19(6):731-44. PubMed ID: 22651812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for the Analysis and Interpretation for Rare Variants Associated with Complex Traits.
    Weissenkampen JD; Jiang Y; Eckert S; Jiang B; Li B; Liu DJ
    Curr Protoc Hum Genet; 2019 Apr; 101(1):e83. PubMed ID: 30849219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association study and identification of chromosomal enhancer maps in multiple brain regions related to autism spectrum disorder.
    Zhang L; Liu L; Wen Y; Ma M; Cheng S; Yang J; Li P; Cheng B; Du Y; Liang X; Zhao Y; Ding M; Guo X; Zhang F
    Autism Res; 2019 Jan; 12(1):26-32. PubMed ID: 30157312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Assortative Mating in Autism Spectrum Disorder.
    Connolly S; Anney R; Gallagher L; Heron EA
    Biol Psychiatry; 2019 Aug; 86(4):286-293. PubMed ID: 31200929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Case-control meta-analysis of blood DNA methylation and autism spectrum disorder.
    Andrews SV; Sheppard B; Windham GC; Schieve LA; Schendel DE; Croen LA; Chopra P; Alisch RS; Newschaffer CJ; Warren ST; Feinberg AP; Fallin MD; Ladd-Acosta C
    Mol Autism; 2018; 9():40. PubMed ID: 29988321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive impact of rare genomic copy number variations in siblings of individuals with autism spectrum disorders.
    D'Abate L; Walker S; Yuen RKC; Tammimies K; Buchanan JA; Davies RW; Thiruvahindrapuram B; Wei J; Brian J; Bryson SE; Dobkins K; Howe J; Landa R; Leef J; Messinger D; Ozonoff S; Smith IM; Stone WL; Warren ZE; Young G; Zwaigenbaum L; Scherer SW
    Nat Commun; 2019 Dec; 10(1):5519. PubMed ID: 31801954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing of transformed lymphoblastoid cells from siblings discordant for autism spectrum disorders reveals transcriptomic and functional alterations: Evidence for sex-specific effects.
    Tylee DS; Espinoza AJ; Hess JL; Tahir MA; McCoy SY; Rim JK; Dhimal T; Cohen OS; Glatt SJ
    Autism Res; 2017 Mar; 10(3):439-455. PubMed ID: 27529825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring shared variants in cohorts of discordant siblings with applications to autism.
    Ye K; Iossifov I; Levy D; Yamrom B; Buja A; Krieger AM; Wigler M
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):7073-7076. PubMed ID: 28630308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple and accurate method to determine genomewide significance for association tests in sequencing studies.
    Lin DY
    Genet Epidemiol; 2019 Jun; 43(4):365-372. PubMed ID: 30623491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.