These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31289963)

  • 1. Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery.
    Lee M; Kim H; Joe H; Kim HG
    J Cheminform; 2019 Jul; 11(1):46. PubMed ID: 31289963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.
    Tsubaki M; Tomii K; Sese J
    Bioinformatics; 2019 Jan; 35(2):309-318. PubMed ID: 29982330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MMCL-CPI: A multi-modal compound-protein interaction prediction model incorporating contrastive learning pre-training.
    Qian Y; Li X; Wu J; Zhang Q
    Comput Biol Chem; 2024 Oct; 112():108137. PubMed ID: 39079285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting compound-protein interaction prediction by deep learning.
    Tian K; Shao M; Wang Y; Guan J; Zhou S
    Methods; 2016 Nov; 110():64-72. PubMed ID: 27378654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for multi-case physics-informed neural networks for tube flows: a study using 2D flow scenarios.
    Wong HS; Chan WX; Li BH; Yap CH
    Sci Rep; 2024 May; 14(1):11577. PubMed ID: 38773243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics-informed neural networks based on adaptive weighted loss functions for Hamilton-Jacobi equations.
    Liu Y; Cai L; Chen Y; Wang B
    Math Biosci Eng; 2022 Sep; 19(12):12866-12896. PubMed ID: 36654026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines.
    Nath K; Meng X; Smith DJ; Karniadakis GE
    Sci Rep; 2023 Aug; 13(1):13683. PubMed ID: 37607951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general prediction model for compound-protein interactions based on deep learning.
    Ji W; She S; Qiao C; Feng Q; Rui M; Xu X; Feng C
    Front Pharmacol; 2024; 15():1465890. PubMed ID: 39295942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FMGNN: A Method to Predict Compound-Protein Interaction With Pharmacophore Features and Physicochemical Properties of Amino Acids.
    Tang C; Zhong C; Wang M; Zhou F
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1030-1040. PubMed ID: 35503835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depression Risk Prediction for Chinese Microblogs via Deep-Learning Methods: Content Analysis.
    Wang X; Chen S; Li T; Li W; Zhou Y; Zheng J; Chen Q; Yan J; Tang B
    JMIR Med Inform; 2020 Jul; 8(7):e17958. PubMed ID: 32723719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-informed neural networks to solve lumped kinetic model for chromatography process.
    Tang SY; Yuan YH; Chen YC; Yao SJ; Wang Y; Lin DQ
    J Chromatogr A; 2023 Oct; 1708():464346. PubMed ID: 37716084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient representation learning and interpretable evaluation using clinical notes.
    Sushil M; Šuster S; Luyckx K; Daelemans W
    J Biomed Inform; 2018 Aug; 84():103-113. PubMed ID: 29966746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of multi-task learning by data enrichment: application for drug discovery.
    Sosnina EA; Sosnin S; Fedorov MV
    J Comput Aided Mol Des; 2023 Apr; 37(4):183-200. PubMed ID: 36943645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning method for predicting molecular properties and compound-protein interactions.
    Ma J; Zhang R; Li T; Jiang J; Zhao Z; Liu Y; Ma J
    J Mol Graph Model; 2022 Dec; 117():108283. PubMed ID: 35994925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT).
    Inda AJG; Huang SY; İmamoğlu N; Qin R; Yang T; Chen T; Yuan Z; Yu W
    Diagnostics (Basel); 2022 Oct; 12(11):. PubMed ID: 36359471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity.
    Playe B; Stoven V
    J Cheminform; 2020 Feb; 12(1):11. PubMed ID: 33431042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.