BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31289974)

  • 21. Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum.
    Zhou Z; Wang C; Chen Y; Zhang K; Xu H; Cai H; Chen Z
    Biotechnol Prog; 2015; 31(1):12-9. PubMed ID: 25311136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and arginine metabolism of the wine lactic acid bacteria Lactobacillus buchneri and Oenococcus oeni at different pH values and arginine concentrations.
    Mira De Orduña R; Patchett ML; Liu SQ; Pilone GJ
    Appl Environ Microbiol; 2001 Apr; 67(4):1657-62. PubMed ID: 11282618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and Characterization of the Small Heat Shock Protein Hsp20 from Oenococcus oeni SD-2a.
    Qi Y; Liu D; Yu H; Zhang G; Fan M
    Curr Microbiol; 2020 Nov; 77(11):3595-3602. PubMed ID: 32851484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete genome sequence of Lactobacillus buchneri NRRL B-30929, a novel strain from a commercial ethanol plant.
    Liu S; Leathers TD; Copeland A; Chertkov O; Goodwin L; Mills DA
    J Bacteriol; 2011 Aug; 193(15):4019-20. PubMed ID: 21622751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of the cloned subunits of Escherichia coli transhydrogenase from separate replicons.
    Clarke DM; Bragg PD
    FEBS Lett; 1986 May; 200(1):23-6. PubMed ID: 3009227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding the biodiversity of Oenococcus oeni through comparative genomics of apple cider and kombucha strains.
    Lorentzen MP; Campbell-Sills H; Jorgensen TS; Nielsen TK; Coton M; Coton E; Hansen L; Lucas PM
    BMC Genomics; 2019 May; 20(1):330. PubMed ID: 31046679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.
    Jiang J; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V
    Food Microbiol; 2018 Aug; 73():150-159. PubMed ID: 29526200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation, selection, and characterization of highly ethanol-tolerant strains of Oenococcus oeni from south Catalonia.
    Bordas M; Araque I; Alegret JO; El Khoury M; Lucas P; Rozès N; Reguant C; Bordons A
    Int Microbiol; 2013 Jun; 16(2):113-23. PubMed ID: 24400529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of an acidic, thermostable and highly NADP
    Alpdağtaş S; Yücel S; Kapkaç HA; Liu S; Binay B
    Biotechnol Lett; 2018 Jul; 40(7):1135-1147. PubMed ID: 29777512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of directed evolution to develop ethanol tolerant Oenococcus oeni for more efficient malolactic fermentation.
    Betteridge AL; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):921-932. PubMed ID: 29150706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyridine nucleotide transhydrogenase PntAB is essential for optimal growth and photosynthetic integrity under low-light mixotrophic conditions in Synechocystis sp. PCC 6803.
    Kämäräinen J; Huokko T; Kreula S; Jones PR; Aro EM; Kallio P
    New Phytol; 2017 Apr; 214(1):194-204. PubMed ID: 27930818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri*.
    Liu S; Bischoff KM; Hughes SR; Leathers TD; Price NP; Qureshi N; Rich JO
    Lett Appl Microbiol; 2009 Mar; 48(3):337-42. PubMed ID: 19187511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase.
    Weckbecker A; Hummel W
    Biotechnol Lett; 2004 Nov; 26(22):1739-44. PubMed ID: 15604828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of fruity ethyl esters by acyl coenzyme A: alcohol acyltransferase and reverse esterase activities in Oenococcus oeni and Lactobacillus plantarum.
    Costello PJ; Siebert TE; Solomon MR; Bartowsky EJ
    J Appl Microbiol; 2013 Mar; 114(3):797-806. PubMed ID: 23216623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri.
    Liu S; Bischoff KM; Qureshi N; Hughes SR; Rich JO
    N Biotechnol; 2010 Sep; 27(4):283-8. PubMed ID: 20371307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethanol stress in Oenococcus oeni: transcriptional response and complex physiological mechanisms.
    Bonomo MG; Di Tomaso K; Calabrone L; Salzano G
    J Appl Microbiol; 2018 Jul; 125(1):2-15. PubMed ID: 29377375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in the volatile profile of Pinot noir wines caused by Patagonian Lactobacillus plantarum and Oenococcus oeni strains.
    Brizuela NS; Bravo-Ferrada BM; Pozo-Bayón MÁ; Semorile L; Elizabeth Tymczyszyn E
    Food Res Int; 2018 Apr; 106():22-28. PubMed ID: 29579921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA accumulation in Candida tropicalis based on cofactor engineering.
    Li B; Liu Y; Wang L; Hong J; Chen Y; Ying H
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30942847
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow cytometry and capillary electrophoresis analyses in ethanol-stressed Oenococcus oeni strains and changes assessment of membrane fatty acid composition.
    Bonomo MG; Cafaro C; Guerrieri A; Crispo F; Milella L; Calabrone L; Salzano G
    J Appl Microbiol; 2017 Jun; 122(6):1615-1626. PubMed ID: 28375583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production.
    Shi A; Zhu X; Lu J; Zhang X; Ma Y
    Metab Eng; 2013 Mar; 16():1-10. PubMed ID: 23246519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.