These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 31290128)
1. A standardized validity assessment protocol for physiological signals from wearable technology: Methodological underpinnings and an application to the E4 biosensor. van Lier HG; Pieterse ME; Garde A; Postel MG; de Haan HA; Vollenbroek-Hutten MMR; Schraagen JM; Noordzij ML Behav Res Methods; 2020 Apr; 52(2):607-629. PubMed ID: 31290128 [TBL] [Abstract][Full Text] [Related]
2. From lab to life: Evaluating the reliability and validity of psychophysiological data from wearable devices in laboratory and ambulatory settings. Hu X; Sgherza TR; Nothrup JB; Fresco DM; Naragon-Gainey K; Bylsma LM Behav Res Methods; 2024 Oct; 56(7):1-20. PubMed ID: 38528248 [TBL] [Abstract][Full Text] [Related]
3. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review. Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657 [TBL] [Abstract][Full Text] [Related]
4. Associations Between Physiological Signals Captured Using Wearable Sensors and Self-reported Outcomes Among Adults in Alcohol Use Disorder Recovery: Development and Usability Study. Alinia P; Sah RK; McDonell M; Pendry P; Parent S; Ghasemzadeh H; Cleveland MJ JMIR Form Res; 2021 Jul; 5(7):e27891. PubMed ID: 34287205 [TBL] [Abstract][Full Text] [Related]
5. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. Nelson BW; Allen NB JMIR Mhealth Uhealth; 2019 Mar; 7(3):e10828. PubMed ID: 30855232 [TBL] [Abstract][Full Text] [Related]
7. Design and Implementation of an Ultra-Low Resource Electrodermal Activity Sensor for Wearable Applications Pope GC; Halter RJ Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146358 [TBL] [Abstract][Full Text] [Related]
8. Development of a Novel Wearable Ring-Shaped Biosensor. Santarelli L; Diyakonova O; Betti S; Esposito D; Castro E; Cavallo F Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3750-3753. PubMed ID: 30441182 [TBL] [Abstract][Full Text] [Related]
9. Wrist-Worn Sensor Validation for Heart Rate Variability and Electrodermal Activity Detection in a Stressful Driving Environment. Costantini S; Chiappini M; Malerba G; Dei C; Falivene A; Arlati S; Colombo V; Biffi E; Storm FA Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896517 [TBL] [Abstract][Full Text] [Related]
10. A Usability Study of Physiological Measurement in School Using Wearable Sensors. Thammasan N; Stuldreher IV; Schreuders E; Giletta M; Brouwer AM Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962191 [TBL] [Abstract][Full Text] [Related]
11. Detection of essential hypertension with physiological signals from wearable devices. Ghosh A; Torres JM; Danieli M; Riccardi G Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8095-8. PubMed ID: 26738172 [TBL] [Abstract][Full Text] [Related]
12. [Investigation on new paradigm of clinical physiological monitoring by using wearable devices]. Wang Z; Liang H; Wang J; Zang Y; Xu H; Lan K; He M; Yan W; Cao D; Yan M; Zhang Z Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Aug; 38(4):753-763. PubMed ID: 34459176 [TBL] [Abstract][Full Text] [Related]
13. Validation of Spectral Indices of Electrodermal Activity with a Wearable Device. McNaboe RQ; Hossain MB; Kong Y; Chon KH; Posada-Quintero HF Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6991-6994. PubMed ID: 34892712 [TBL] [Abstract][Full Text] [Related]
14. Framework for selecting and benchmarking mobile devices in psychophysiological research. Kleckner IR; Feldman MJ; Goodwin MS; Quigley KS Behav Res Methods; 2021 Apr; 53(2):518-535. PubMed ID: 32748241 [TBL] [Abstract][Full Text] [Related]
15. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study. Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226 [TBL] [Abstract][Full Text] [Related]
17. Design and Validation of a Multimodal Wearable Device for Simultaneous Collection of Electrocardiogram, Electromyogram, and Electrodermal Activity. McNaboe R; Beardslee L; Kong Y; Smith BN; Chen IP; Posada-Quintero HF; Chon KH Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433449 [TBL] [Abstract][Full Text] [Related]
18. Wearable Lab on Body: Combining Sensing of Biochemical and Digital Markers in a Wearable Device. Pataranutaporn P; Jain A; Johnson CM; Shah P; Maes P Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3327-3332. PubMed ID: 31946594 [TBL] [Abstract][Full Text] [Related]
19. Wearable Technologies for Mental Workload, Stress, and Emotional State Assessment during Working-Like Tasks: A Comparison with Laboratory Technologies. Giorgi A; Ronca V; Vozzi A; Sciaraffa N; di Florio A; Tamborra L; Simonetti I; Aricò P; Di Flumeri G; Rossi D; Borghini G Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810613 [TBL] [Abstract][Full Text] [Related]
20. Concurrent heart rate validity of wearable technology devices during trail running. Navalta JW; Montes J; Bodell NG; Salatto RW; Manning JW; DeBeliso M PLoS One; 2020; 15(8):e0238569. PubMed ID: 32866216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]