BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31290184)

  • 1. Estimation and prediction for a mechanistic model of measles transmission using particle filtering and maximum likelihood estimation.
    Eilertson KE; Fricks J; Ferrari MJ
    Stat Med; 2019 Sep; 38(21):4146-4158. PubMed ID: 31290184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying particle filtering in both aggregated and age-structured population compartmental models of pre-vaccination measles.
    Li X; Doroshenko A; Osgood ND
    PLoS One; 2018; 13(11):e0206529. PubMed ID: 30388138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Transmission of Measles and Rubella to Support Global Management Policy Analyses and Eradication Investment Cases.
    Thompson KM; Badizadegan ND
    Risk Anal; 2017 Jun; 37(6):1109-1131. PubMed ID: 28561947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models.
    Zimmer C; Yaesoubi R; Cohen T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005257. PubMed ID: 28095403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the population effectiveness of vaccination.
    Haber M
    Stat Med; 1997 Mar; 16(6):601-10. PubMed ID: 9131750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards eradication of measles virus: global progress and strategy evaluation.
    Nokes DJ; Williams JR; Butler AR
    Vet Microbiol; 1995 May; 44(2-4):333-50. PubMed ID: 8588328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing methods for estimating R0 from the size distribution of subcritical transmission chains.
    Blumberg S; Lloyd-Smith JO
    Epidemics; 2013 Sep; 5(3):131-45. PubMed ID: 24021520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing a novel model to estimate national and global measles disease burden.
    Miller MA
    Int J Infect Dis; 2000; 4(1):14-20. PubMed ID: 10689209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum attack rate for measuring measles vaccine efficacy.
    Nourjah P; Frerichs RR
    Int J Epidemiol; 1995 Aug; 24(4):834-41. PubMed ID: 8550283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics.
    Martinez-Bakker M; Bakker KM; King AA; Rohani P
    Proc Biol Sci; 2014 May; 281(1783):20132438. PubMed ID: 24695423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
    He D; Ionides EL; King AA
    J R Soc Interface; 2010 Feb; 7(43):271-83. PubMed ID: 19535416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential health impact of intervention programs for time-varying disease risk: a measles vaccination modeling study.
    Portnoy A; Hsieh YL; Abbas K; Klepac P; Santos H; Brenzel L; Jit M; Ferrari M
    BMC Med; 2022 Mar; 20(1):113. PubMed ID: 35260139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London.
    Cauchemez S; Ferguson NM
    J R Soc Interface; 2008 Aug; 5(25):885-97. PubMed ID: 18174112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Inverse Method for a Childhood Infectious Disease Model with Its Application to Pre-vaccination and Post-vaccination Measles Data.
    Kong JD; Jin C; Wang H
    Bull Math Biol; 2015 Dec; 77(12):2231-63. PubMed ID: 26582359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Public Health and Economic Consequences of Vaccine Hesitancy for Measles in the United States.
    Lo NC; Hotez PJ
    JAMA Pediatr; 2017 Sep; 171(9):887-892. PubMed ID: 28738137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of measles reproduction ratios and prospects for elimination of measles by vaccination in some Western European countries.
    Wallinga J; Lévy-Bruhl D; Gay NJ; Wachmann CH
    Epidemiol Infect; 2001 Oct; 127(2):281-95. PubMed ID: 11693506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of vaccine efficacy in outbreaks of acute infectious diseases.
    Haber M; Longini IM; Halloran ME
    Stat Med; 1991 Oct; 10(10):1573-84. PubMed ID: 1947513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination.
    Becker AD; Wesolowski A; Bjørnstad ON; Grenfell BT
    PLoS Comput Biol; 2019 Sep; 15(9):e1007305. PubMed ID: 31513578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study.
    Lessler J; Metcalf CJ; Cutts FT; Grenfell BT
    PLoS Med; 2016 Oct; 13(10):e1002144. PubMed ID: 27727285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.