These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31290274)

  • 1. Monitoring Fluorescence Response of Amphiphilic Flapping Molecules in Compressed Monolayers at the Air-Water Interface.
    Nakanishi W; Saito S; Sakamoto N; Kashiwagi A; Yamaguchi S; Sakai H; Ariga K
    Chem Asian J; 2019 Aug; 14(16):2869-2876. PubMed ID: 31290274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular rotors confined at an ordered 2D interface.
    Mori T; Komatsu H; Sakamoto N; Suzuki K; Hill JP; Matsumoto M; Sakai H; Ariga K; Nakanishi W
    Phys Chem Chem Phys; 2018 Jan; 20(5):3073-3078. PubMed ID: 28759061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodegradable coumarin-derived amphiphilic dendrons for DNA binding: Self-assembly and phototriggered disassembly in water and air-water interface.
    Ou JY; Shih YC; Wang BY; Chu CC
    Colloids Surf B Biointerfaces; 2019 Mar; 175():428-435. PubMed ID: 30562717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.
    Engin O; Sayar M
    J Phys Chem B; 2012 Feb; 116(7):2198-207. PubMed ID: 22268576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphiphilic laminin peptides at air/water interface--effect of single amino acid mutations on surface properties.
    Lakshmanan M; Dhathathreyan A
    J Colloid Interface Sci; 2006 Oct; 302(1):95-102. PubMed ID: 16842812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field.
    Mori T; Chin H; Kawashima K; Ngo HT; Cho NJ; Nakanishi W; Hill JP; Ariga K
    ACS Nano; 2019 Feb; 13(2):2410-2419. PubMed ID: 30673207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the environment on photoinduced electron transfer: comparison between organized monolayers at the air-water interface and monolayer assemblies on glass.
    Sandez-Macho I; Gonzalez-López J; Suarez-Varela A; Möbius D
    J Phys Chem B; 2005 Dec; 109(47):22386-91. PubMed ID: 16853916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanochemical Tuning of the Binaphthyl Conformation at the Air-Water Interface.
    Ishikawa D; Mori T; Yonamine Y; Nakanishi W; Cheung DL; Hill JP; Ariga K
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8988-91. PubMed ID: 26073773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of lateral phases in cholesterol and phosphatidylcholine monolayers at the air/water interface--a comparative study with two different reporter molecules.
    Slotte JP; Mattjus P
    Biochim Biophys Acta; 1995 Jan; 1254(1):22-9. PubMed ID: 7811742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving forces for adsorption of amphiphilic peptides to the air-water interface.
    Engin O; Villa A; Sayar M; Hess B
    J Phys Chem B; 2010 Sep; 114(34):11093-101. PubMed ID: 20687527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolayers at air-water interfaces: from origins-of-life to nanotechnology.
    Ariga K; Hill JP
    Chem Rec; 2011 Aug; 11(4):199-211. PubMed ID: 21739568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Differential Aggregation of Anionic and Nonionic Monorhamnolipids at Air-Water and Oil-Water Interfaces: A Classical Molecular Dynamics Simulation Study.
    Munusamy E; Luft CM; Pemberton JE; Schwartz SD
    J Phys Chem B; 2018 Jun; 122(24):6403-6416. PubMed ID: 29856614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Langmuir monolayers of an inclusion complex formed by a new calixarene derivative and fullerene.
    González-Delgado AM; Giner-Casares JJ; Brezesinski G; Regnouf-de-Vains JB; Camacho L
    Langmuir; 2012 Aug; 28(33):12114-21. PubMed ID: 22852791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular rotation in 3 dimensions at an air/water interface using femtosecond time resolved sum frequency generation.
    Rao Y; Qian Y; Deng GH; Kinross A; Turro NJ; Eisenthal KB
    J Chem Phys; 2019 Mar; 150(9):094709. PubMed ID: 30849892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous behavior of amine oxide surfactants at the air/water interface.
    Goracci L; Germani R; Rathman JF; Savelli G
    Langmuir; 2007 Oct; 23(21):10525-32. PubMed ID: 17850104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis characterization of phospholipid monolayers catalyzed by different phospholipases at the air-water interface.
    He Q; Li J
    Adv Colloid Interface Sci; 2007 Feb; 131(1-2):91-8. PubMed ID: 17210114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation of a peptide antibiotic alamethicin at the air-water interface and its influence on the viscoelasticity of phospholipid monolayers.
    Krishnaswamy R; Rathee V; Sood AK
    Langmuir; 2008 Oct; 24(20):11770-7. PubMed ID: 18823083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partially induced transition from horizontal to vertical orientation of helical peptides at the air-water interface and the structure of their monolayers transferred on the solid substrates.
    Kato N; Sasaki T; Mukai Y
    Biochim Biophys Acta; 2015 Apr; 1848(4):967-75. PubMed ID: 25559318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ studies of metal coordinations and molecular orientations in monolayers of amino-acid-derived Schiff bases at the air-water interface.
    Liu H; Zheng H; Miao W; Du X
    Langmuir; 2009 Mar; 25(5):2941-8. PubMed ID: 19437705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterodyne-detected sum frequency generation of water at surfaces with varying hydrophobicity.
    Sanders SE; Petersen PB
    J Chem Phys; 2019 May; 150(20):204708. PubMed ID: 31153186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.