BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31290364)

  • 1. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize.
    Aguirre-Liguori JA; Ramírez-Barahona S; Tiffin P; Eguiarte LE
    Proc Biol Sci; 2019 Jul; 286(1906):20190486. PubMed ID: 31290364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting genomic patterns of local adaptation and niche suitability in teosintes.
    Aguirre-Liguori JA; Tenaillon MI; Vázquez-Lobo A; Gaut BS; Jaramillo-Correa JP; Montes-Hernandez S; Souza V; Eguiarte LE
    Mol Ecol; 2017 Aug; 26(16):4226-4240. PubMed ID: 28612956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomics of Long- and Short-Term Adaptation in Maize and Teosintes.
    Lorant A; Ross-Ibarra J; Tenaillon M
    Methods Mol Biol; 2020; 2090():289-311. PubMed ID: 31975172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecogeography of teosinte.
    Sánchez González JJ; Ruiz Corral JA; García GM; Ojeda GR; Larios LC; Holland JB; Medrano RM; García Romero GE
    PLoS One; 2018; 13(2):e0192676. PubMed ID: 29451888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferences from the historical distribution of wild and domesticated maize provide ecological and evolutionary insight.
    Hufford MB; Martínez-Meyer E; Gaut BS; Eguiarte LE; Tenaillon MI
    PLoS One; 2012; 7(11):e47659. PubMed ID: 23155371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation.
    Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X
    BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of environment, local adaptation, and past climate fluctuation on the amount and distribution of genetic diversity in two subspecies of Mexican wild Zea mays.
    Gasca-Pineda J; Gutiérrez-Guerrero YT; Aguirre-Planter E; Eguiarte LE
    Am J Bot; 2020 Nov; 107(11):1542-1554. PubMed ID: 33205455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective sorting of ancestral introgression in maize and teosinte along an elevational cline.
    Calfee E; Gates D; Lorant A; Perkins MT; Coop G; Ross-Ibarra J
    PLoS Genet; 2021 Oct; 17(10):e1009810. PubMed ID: 34634032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence with gene flow is driven by local adaptation to temperature and soil phosphorus concentration in teosinte subspecies (Zea mays parviglumis and Zea mays mexicana).
    Aguirre-Liguori JA; Gaut BS; Jaramillo-Correa JP; Tenaillon MI; Montes-Hernández S; García-Oliva F; Hearne SJ; Eguiarte LE
    Mol Ecol; 2019 Jun; 28(11):2814-2830. PubMed ID: 30980686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome size variation in wild and cultivated maize along altitudinal gradients.
    Díez CM; Gaut BS; Meca E; Scheinvar E; Montes-Hernandez S; Eguiarte LE; Tenaillon MI
    New Phytol; 2013 Jul; 199(1):264-276. PubMed ID: 23550586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relevance of gene flow with wild relatives in understanding the domestication process.
    Moreno-Letelier A; Aguirre-Liguori JA; Piñero D; Vázquez-Lobo A; Eguiarte LE
    R Soc Open Sci; 2020 Apr; 7(4):191545. PubMed ID: 32431864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex patterns of local adaptation in teosinte.
    Pyhäjärvi T; Hufford MB; Mezmouk S; Ross-Ibarra J
    Genome Biol Evol; 2013; 5(9):1594-609. PubMed ID: 23902747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teosinte as a model system for population and ecological genomics.
    Hufford MB; Bilinski P; Pyhäjärvi T; Ross-Ibarra J
    Trends Genet; 2012 Dec; 28(12):606-15. PubMed ID: 23021022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.
    Yang N; Xu XW; Wang RR; Peng WL; Cai L; Song JM; Li W; Luo X; Niu L; Wang Y; Jin M; Chen L; Luo J; Deng M; Wang L; Pan Q; Liu F; Jackson D; Yang X; Chen LL; Yan J
    Nat Commun; 2017 Nov; 8(1):1874. PubMed ID: 29187731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples.
    Fustier MA; Brandenburg JT; Boitard S; Lapeyronnie J; Eguiarte LE; Vigouroux Y; Manicacci D; Tenaillon MI
    Mol Ecol; 2017 May; 26(10):2738-2756. PubMed ID: 28256021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous hybridization between maize and teosinte.
    Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L
    J Hered; 2007; 98(2):183-7. PubMed ID: 17400586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe.
    Le Corre V; Siol M; Vigouroux Y; Tenaillon MI; Délye C
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25618-25627. PubMed ID: 32989136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis.
    Peterson ML; Doak DF; Morris WF
    Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of cryptic population structure on observed mating patterns in the wild progenitor of maize (Zea mays ssp. parviglumis).
    Hufford MB; Gepts P; Ross-Ibarra J
    Mol Ecol; 2011 Jan; 20(1):46-55. PubMed ID: 21070423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High segregation distortion in maize B73 x teosinte crosses.
    Wang G; He QQ; Xu ZK; Song RT
    Genet Mol Res; 2012 Mar; 11(1):693-706. PubMed ID: 22535405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.