BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3129040)

  • 1. Structure and stability of thermophilic enzymes. Studies on thermolysin.
    Fontana A
    Biophys Chem; 1988 Feb; 29(1-2):181-93. PubMed ID: 3129040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autolysis of thermolysin. Isolation and characterization of a folded three-fragment complex.
    Fassina G; Vita C; Dalzoppo D; Zamai M; Zambonin M; Fontana A
    Eur J Biochem; 1986 Apr; 156(2):221-8. PubMed ID: 3084249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychrotrophic Pseudomonas.
    Barach JT; Adams DM
    Biochim Biophys Acta; 1977 Dec; 485(2):417-23. PubMed ID: 411519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protein-protein interactions between SMPI and thermolysin studied by molecular dynamics and MM/PBSA calculations.
    Adekoya O; Willassen NP; Sylte I
    J Biomol Struct Dyn; 2005 Apr; 22(5):521-31. PubMed ID: 15702924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases.
    Grandi C; Vita C; Dalzoppo D; Fontana A
    Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability.
    Voordouw G; Milo C; Roche RS
    Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the action of thermolysin.
    Tronrud DE; Roderick SL; Matthews BW
    Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features of neutral protease from Bacillus subtilis deduced from model-building and limited proteolysis experiments.
    Signor G; Vita C; Fontana A; Frigerio F; Bolognesi M; Toma S; Gianna R; De Gregoriis E; Grandi G
    Eur J Biochem; 1990 Apr; 189(2):221-7. PubMed ID: 2110895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between sites of limited proteolysis and segmental mobility in thermolysin.
    Fontana A; Fassina G; Vita C; Dalzoppo D; Zamai M; Zambonin M
    Biochemistry; 1986 Apr; 25(8):1847-51. PubMed ID: 3707915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease.
    Tajima M; Urabe I; Yutani K; Okada H
    Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution.
    Stark W; Pauptit RA; Wilson KS; Jansonius JN
    Eur J Biochem; 1992 Jul; 207(2):781-91. PubMed ID: 1633827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destructive twisting of neutral metalloproteases: the catalysis mechanism of the Dispase autolysis-inducing protein from Streptomyces mobaraensis DSM 40487.
    Fiebig D; Storka J; Roeder M; Meyners C; Schmelz S; Blankenfeldt W; Scrima A; Kolmar H; Fuchsbauer HL
    FEBS J; 2018 Nov; 285(22):4246-4264. PubMed ID: 30171661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited proteolysis of lysozyme in trifluoroethanol. Isolation and characterization of a partially active enzyme derivative.
    Polverino de Laureto P; De Filippis V; Scaramella E; Zambonin M; Fontana A
    Eur J Biochem; 1995 Jun; 230(2):779-87. PubMed ID: 7607252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic activity of thermolysin under extremes of pressure and temperature: modulation by metal ions.
    Kudryashova EV; Mozhaev VV; Balny C
    Biochim Biophys Acta; 1998 Jul; 1386(1):199-210. PubMed ID: 9675281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin.
    O'Donohue MJ; Roques BP; Beaumont A
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):599-603. PubMed ID: 8002967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance studies of the active-site region of thermolysin.
    Bigbee WL; Dahlquist FW
    Biochemistry; 1974 Aug; 13(17):3542-9. PubMed ID: 4367427
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.