These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31290409)
1. Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Zhao L; Mok S; Moraes C Biofabrication; 2019 Aug; 11(4):045013. PubMed ID: 31290409 [TBL] [Abstract][Full Text] [Related]
2. A rapid biofabrication technique for self-assembled collagen-based multicellular and heterogeneous 3D tissue constructs. Shahin-Shamsabadi A; Selvaganapathy PR Acta Biomater; 2019 Jul; 92():172-183. PubMed ID: 31085365 [TBL] [Abstract][Full Text] [Related]
3. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue. Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503 [TBL] [Abstract][Full Text] [Related]
5. A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Masuda T; Takei N; Nakano T; Anada T; Suzuki O; Arai F Biomed Microdevices; 2012 Dec; 14(6):1085-93. PubMed ID: 22996697 [TBL] [Abstract][Full Text] [Related]
6. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Pradhan S; Clary JM; Seliktar D; Lipke EA Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665 [TBL] [Abstract][Full Text] [Related]
7. Modeling fusion of cellular aggregates in biofabrication using phase field theories. Yang X; Mironov V; Wang Q J Theor Biol; 2012 Jun; 303():110-8. PubMed ID: 22763135 [TBL] [Abstract][Full Text] [Related]
8. Using Sacrificial Cell Spheroids for the Bioprinting of Perfusable 3D Tissue and Organ Constructs: A Computational Study. Robu A; Mironov V; Neagu A Comput Math Methods Med; 2019; 2019():7853586. PubMed ID: 31236128 [TBL] [Abstract][Full Text] [Related]
9. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications. Lee GH; Lee JS; Wang X; Lee SH Adv Healthc Mater; 2016 Jan; 5(1):56-74. PubMed ID: 25880830 [TBL] [Abstract][Full Text] [Related]
10. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Monteiro MV; Gaspar VM; Ferreira LP; Mano JF Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033 [TBL] [Abstract][Full Text] [Related]
11. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Candiello J; Grandhi TSP; Goh SK; Vaidya V; Lemmon-Kishi M; Eliato KR; Ros R; Kumta PN; Rege K; Banerjee I Biomaterials; 2018 Sep; 177():27-39. PubMed ID: 29883914 [TBL] [Abstract][Full Text] [Related]
12. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Mekhileri NV; Lim KS; Brown GCJ; Mutreja I; Schon BS; Hooper GJ; Woodfield TBF Biofabrication; 2018 Jan; 10(2):024103. PubMed ID: 29199637 [TBL] [Abstract][Full Text] [Related]
13. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Decarli MC; Amaral R; Santos DPD; Tofani LB; Katayama E; Rezende RA; Silva JVLD; Swiech K; Suazo CAT; Mota C; Moroni L; Moraes ÂM Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33592595 [TBL] [Abstract][Full Text] [Related]
14. Thermoreversible hydrogel for in situ generation and release of HepG2 spheroids. Wang D; Cheng D; Guan Y; Zhang Y Biomacromolecules; 2011 Mar; 12(3):578-84. PubMed ID: 21247096 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of the self-assembly of complex cellular aggregates on micromolded nonadhesive hydrogels. Napolitano AP; Chai P; Dean DM; Morgan JR Tissue Eng; 2007 Aug; 13(8):2087-94. PubMed ID: 17518713 [TBL] [Abstract][Full Text] [Related]
16. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
18. Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture. Imaninezhad M; Hill L; Kolar G; Vogt K; Zustiak SP Bioconjug Chem; 2019 Jan; 30(1):34-46. PubMed ID: 30562006 [TBL] [Abstract][Full Text] [Related]
19. Scalable robotic biofabrication of tissue spheroids. Mehesz AN; Brown J; Hajdu Z; Beaver W; da Silva JV; Visconti RP; Markwald RR; Mironov V Biofabrication; 2011 Jun; 3(2):025002. PubMed ID: 21562365 [TBL] [Abstract][Full Text] [Related]
20. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform. Hu K; Zhou N; Li Y; Ma S; Guo Z; Cao M; Zhang Q; Sun J; Zhang T; Gu N ACS Appl Mater Interfaces; 2016 Jun; 8(24):15113-9. PubMed ID: 27258682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]