These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31290489)

  • 1. Monitoring 2,3',5,5'-tetrachlorobiphenyl with a rapid and sensitive environmental aptamer sensor.
    Liu S; Chen Q; Wang Z; Cao T; Zhao G; Zhou Y
    Analyst; 2019 Aug; 144(16):4841-4847. PubMed ID: 31290489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly sensitive photoelectrochemical aptasensor based on BiVO
    Fan L; Liang G; Yan W; Guo Y; Bi Y; Dong C
    Talanta; 2021 Oct; 233():122551. PubMed ID: 34215054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor.
    Zhang Y; Li L; Zhang H; Shang J; Li C; Naqvi SMZA; Birech Z; Hu J
    Anal Bioanal Chem; 2022 Mar; 414(8):2757-2766. PubMed ID: 35141764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Sensitive and Selective Surface-Enhanced Raman Spectroscopy Label-free Detection of 3,3',4,4'-Tetrachlorobiphenyl Using DNA Aptamer-Modified Ag-Nanorod Arrays.
    Sun K; Huang Q; Meng G; Lu Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5723-8. PubMed ID: 26849392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy.
    Pu H; Xie X; Sun DW; Wei Q; Jiang Y
    Talanta; 2019 Apr; 195():419-425. PubMed ID: 30625564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection.
    Fu C; Wang Y; Chen G; Yang L; Xu S; Xu W
    Anal Chem; 2015 Oct; 87(19):9555-8. PubMed ID: 26339871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel biosensor based on Au@Ag core-shell nanoparticles for sensitive detection of methylamphetamine with surface enhanced Raman scattering.
    Mao K; Zhou Z; Han S; Zhou X; Hu J; Li X; Yang Z
    Talanta; 2018 Dec; 190():263-268. PubMed ID: 30172508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells.
    Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D
    Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.
    Li X; Cheng R; Shi H; Tang B; Xiao H; Zhao G
    J Hazard Mater; 2016 Mar; 304():474-80. PubMed ID: 26619046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptamer Recognition Induced Target-Bridged Strategy for Proteins Detection Based on Magnetic Chitosan and Silver/Chitosan Nanoparticles Using Surface-Enhanced Raman Spectroscopy.
    He J; Li G; Hu Y
    Anal Chem; 2015 Nov; 87(21):11039-47. PubMed ID: 26436541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of a CdS-reduced graphene oxide-carbon nitride composite for self-powered photoelectrochemical aptasensing of PCB72.
    Sun M; Li R; Zhang J; Yan K; Liu M
    Nanoscale; 2019 Mar; 11(13):5982-5988. PubMed ID: 30888368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling.
    Yang L; Fu C; Wang H; Xu S; Xu W
    Anal Bioanal Chem; 2017 Jan; 409(1):235-242. PubMed ID: 27796455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C; Wu X; Dong P; Chen J; Xiao R
    Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection and characterization of PCB-binding DNA aptamers.
    Mehta J; Rouah-Martin E; Van Dorst B; Maes B; Herrebout W; Scippo ML; Dardenne F; Blust R; Robbens J
    Anal Chem; 2012 Feb; 84(3):1669-76. PubMed ID: 22166135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS based aptasensor for ochratoxin A by combining Fe
    Song D; Yang R; Fang S; Liu Y; Long F; Zhu A
    Mikrochim Acta; 2018 Oct; 185(10):491. PubMed ID: 30284043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multimer-based SERS aptasensor for highly sensitive and homogeneous assay of carcinoembryonic antigens.
    Lu T; Wang L; Xia Y; Jin Y; Zhang L; Du S
    Analyst; 2021 May; 146(9):3016-3024. PubMed ID: 33949429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol.
    Yan W; Yang L; Zhuang H; Wu H; Zhang J
    Biosens Bioelectron; 2016 Apr; 78():67-72. PubMed ID: 26594888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging Fe
    He H; Sun DW; Pu H; Huang L
    Food Chem; 2020 Sep; 324():126832. PubMed ID: 32344338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs.
    Chen B; Meng G; Zhou F; Huang Q; Zhu C; Hu X; Kong M
    Nanotechnology; 2014 Apr; 25(14):145605. PubMed ID: 24633265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A capillary-based SERS sensor for ultrasensitive and selective detection of Hg
    Liao W; Chen Y; Huang L; Wang Y; Zhou Y; Tang Q; Chen Z; Liu K
    Mikrochim Acta; 2021 Sep; 188(10):354. PubMed ID: 34570272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.