These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31290520)

  • 1. All-optical tunable plasmonic nano-aggregations for surface-enhanced Raman scattering.
    Chen L; Liu W; Shen D; Liu Y; Zhou Z; Liang X; Wan W
    Nanoscale; 2019 Jul; 11(28):13558-13566. PubMed ID: 31290520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free plasmonic assisted optical trapping of single DNA molecules.
    Chen L; Liu W; Shen D; Zhou Z; Liu Y; Wan W
    Opt Lett; 2021 Mar; 46(6):1482-1485. PubMed ID: 33720217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures.
    Lim SI; Zhong CJ
    Acc Chem Res; 2009 Jun; 42(6):798-808. PubMed ID: 19378982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Supercrystals.
    García-Lojo D; Núñez-Sánchez S; Gómez-Graña S; Grzelczak M; Pastoriza-Santos I; Pérez-Juste J; Liz-Marzán LM
    Acc Chem Res; 2019 Jul; 52(7):1855-1864. PubMed ID: 31243968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of ringlike and disclike nano-structures with surface-enhanced Raman scattering activity.
    Zhang Z; Fu D
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7265-70. PubMed ID: 23035462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface.
    Zhang Y; Wang J; Shen J; Man Z; Shi W; Min C; Yuan G; Zhu S; Urbach HP; Yuan X
    Nano Lett; 2014 Nov; 14(11):6430-6. PubMed ID: 25302534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable optical antennas based on metallic nanoshells with nanoknobs.
    Denisyuk AI; Tinskaya MA; Petrov MI; Shelaev AV; Dorozhkin PS
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8651-5. PubMed ID: 23421259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles.
    Patra PP; Chikkaraddy R; Tripathi RP; Dasgupta A; Kumar GV
    Nat Commun; 2014 Jul; 5():4357. PubMed ID: 25000476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.
    Lu Y; Du G; Chen F; Yang Q; Bian H; Yong J; Hou X
    Sci Rep; 2016 Sep; 6():32675. PubMed ID: 27666667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Near-Field Localization of Silver Core-Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering.
    Asapu R; Ciocarlan RG; Claes N; Blommaerts N; Minjauw M; Ahmad T; Dendooven J; Cool P; Bals S; Denys S; Detavernier C; Lenaerts S; Verbruggen SW
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41577-41585. PubMed ID: 29119785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of interparticle and external forces in nanoparticle assembly.
    Min Y; Akbulut M; Kristiansen K; Golan Y; Israelachvili J
    Nat Mater; 2008 Jul; 7(7):527-38. PubMed ID: 18574482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Optical Microscopy and Spectroscopy Using Near-Field Probes.
    Hermann RJ; Gordon MJ
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():365-387. PubMed ID: 29596000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Nanomaterial-Based Optical Biosensing Platforms for Virus Detection.
    Lee J; Takemura K; Park EY
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.