These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31290913)

  • 1. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration.
    Chen G; Sachar HS; Das S
    Soft Matter; 2018 Jun; 14(25):5246-5255. PubMed ID: 29888349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic current in nanochannels grafted with pH-responsive polyelectrolyte brushes modeled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Etha SA; Chen G; Das S
    Electrophoresis; 2020 Apr; 41(7-8):554-561. PubMed ID: 31541559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Chen G; Das S
    J Phys Chem B; 2017 Apr; 121(14):3130-3141. PubMed ID: 28322562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.
    Li H; Chen G; Das S
    Colloids Surf B Biointerfaces; 2016 Nov; 147():180-190. PubMed ID: 27543690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes.
    Maheedhara RS; Sachar HS; Jing H; Das S
    J Phys Chem B; 2018 Jul; 122(29):7450-7461. PubMed ID: 29969567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of excluded volume interactions and an expanded form of the mass action law.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jan; 15(4):559-574. PubMed ID: 30520929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific Ion and Electric Field Controlled Diverse Ion Distribution and Electroosmotic Transport in a Polyelectrolyte Brush Grafted Nanochannel.
    Pial TH; Das S
    J Phys Chem B; 2022 Dec; 126(49):10543-10553. PubMed ID: 36454705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels.
    Maheedhara RS; Jing H; Sachar HS; Das S
    Phys Chem Chem Phys; 2018 Oct; 20(37):24300-24316. PubMed ID: 30211413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the monomer density of grafted polyelectrolyte brushes and their interactions.
    Manciu M; Ruckenstein E
    Langmuir; 2004 Sep; 20(19):8155-64. PubMed ID: 15350087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical self-consistent field theory study of the response of strong polyelectrolyte brushes to external electric fields.
    Tong C
    J Chem Phys; 2015 Aug; 143(5):054903. PubMed ID: 26254666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous Shrinking-Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects.
    Chen G; Das S
    J Phys Chem B; 2016 Jul; 120(27):6848-57. PubMed ID: 27322913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionizable polyelectrolyte brushes: brush height and electrosteric interaction.
    Biesheuvel PM
    J Colloid Interface Sci; 2004 Jul; 275(1):97-106. PubMed ID: 15158386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits.
    Sivasankar VS; Etha SA; Sachar HS; Das S
    Phys Rev E; 2020 Jul; 102(1-1):013103. PubMed ID: 32794997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyelectrolyte brushes: theory, modelling, synthesis and applications.
    Das S; Banik M; Chen G; Sinha S; Mukherjee R
    Soft Matter; 2015 Nov; 11(44):8550-83. PubMed ID: 26399305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and electrostatic properties between pH-responsive polyelectrolyte brushes studied by augmented strong stretching theory.
    Sin JS
    J Chem Phys; 2022 Aug; 157(8):084902. PubMed ID: 36050036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic Potential Analysis in Polyelectrolyte Brush-Grafted Microchannels Filled with Polyelectrolyte Dispersion.
    Chun B; Chun MS
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.