These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31290915)

  • 21. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips.
    Loessberg-Zahl J; van der Meer AD; van den Berg A; Eijkel JCT
    Lab Chip; 2019 Jan; 19(2):206-213. PubMed ID: 30548051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and characterization of nanopore-interfaced nanochannel devices.
    Zhang Y; Reisner W
    Nanotechnology; 2015 Nov; 26(45):455301. PubMed ID: 26472174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct laser writing of sub-50 nm nanofluidic channels buried in glass for three-dimensional micro-nanofluidic integration.
    Liao Y; Cheng Y; Liu C; Song J; He F; Shen Y; Chen D; Xu Z; Fan Z; Wei X; Sugioka K; Midorikawa K
    Lab Chip; 2013 Apr; 13(8):1626-31. PubMed ID: 23463190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA conformation in nanochannels: Monte Carlo simulation studies using a primitive DNA model.
    Chang R; Jo K
    J Chem Phys; 2012 Mar; 136(9):095101. PubMed ID: 22401472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lab-on-a-chip technologies for single-molecule studies.
    Zhao Y; Chen D; Yue H; French JB; Rufo J; Benkovic SJ; Huang TJ
    Lab Chip; 2013 Jun; 13(12):2183-98. PubMed ID: 23670195
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optic imaging of single and two-phase pressure-driven flows in nano-scale channels.
    Wu Q; Ok JT; Sun Y; Retterer ST; Neeves KB; Yin X; Bai B; Ma Y
    Lab Chip; 2013 Mar; 13(6):1165-71. PubMed ID: 23370894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA tracking within a nanochannel: device fabrication and experiments.
    Mokkapati VR; Di Virgilio V; Shen C; Mollinger J; Bastemeijer J; Bossche A
    Lab Chip; 2011 Aug; 11(16):2711-9. PubMed ID: 21734983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels.
    Menard LD; Ramsey JM
    Anal Chem; 2013 Jan; 85(2):1146-53. PubMed ID: 23234458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device.
    Morikawa K; Kazoe Y; Takagi Y; Tsuyama Y; Pihosh Y; Tsukahara T; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33182488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Entropic unfolding of DNA molecules in nanofluidic channels.
    Levy SL; Mannion JT; Cheng J; Reccius CH; Craighead HG
    Nano Lett; 2008 Nov; 8(11):3839-44. PubMed ID: 18844427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical DNA mapping in nanofluidic devices: principles and applications.
    Müller V; Westerlund F
    Lab Chip; 2017 Feb; 17(4):579-590. PubMed ID: 28098301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level performance.
    Yamamoto T; Fujii T
    Nanotechnology; 2010 Oct; 21(39):395502. PubMed ID: 20808035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D nanomolding for lab-on-a-chip applications.
    Farshchian B; Park S; Choi J; Amirsadeghi A; Lee J; Park S
    Lab Chip; 2012 Nov; 12(22):4764-71. PubMed ID: 22990333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices.
    Wang C; Wang Y; Zhou Y; Wu ZQ; Xia XH
    Anal Bioanal Chem; 2019 Jul; 411(18):4007-4016. PubMed ID: 30972474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA linearization through confinement in nanofluidic channels.
    Douville N; Huh D; Takayama S
    Anal Bioanal Chem; 2008 Aug; 391(7):2395-409. PubMed ID: 18340435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanofluidic devices towards single DNA molecule sequence mapping.
    Marie R; Kristensen A
    J Biophotonics; 2012 Aug; 5(8-9):673-86. PubMed ID: 22815200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of individual polymers using microfluidic based microcurvilinear flow.
    Cheng CM; Kim Y; Yang JM; Leuba SH; Leduc PR
    Lab Chip; 2009 Aug; 9(16):2339-47. PubMed ID: 19636465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level.
    Öz R; Kk S; Westerlund F
    Nanoscale; 2019 Jan; 11(4):2071-2078. PubMed ID: 30644945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplified stretch of bottlebrush-coated DNA in nanofluidic channels.
    Zhang C; Hernandez-Garcia A; Jiang K; Gong Z; Guttula D; Ng SY; Malar PP; van Kan JA; Dai L; Doyle PS; Vries Rd; van der Maarel JR
    Nucleic Acids Res; 2013 Nov; 41(20):e189. PubMed ID: 24003032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.