BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31291161)

  • 1. Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience.
    Busch SE; Khakhalin AS
    J Neurophysiol; 2019 Sep; 122(3):1084-1096. PubMed ID: 31291161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum.
    Jang EV; Ramirez-Vizcarrondo C; Aizenman CD; Khakhalin AS
    Front Neural Circuits; 2016; 10():95. PubMed ID: 27932957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory modality-specific homeostatic plasticity in the developing optic tectum.
    Deeg KE; Aizenman CD
    Nat Neurosci; 2011 May; 14(5):548-50. PubMed ID: 21441922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles.
    Gambrill AC; Faulkner RL; Cline HT
    J Neurophysiol; 2018 May; 119(5):1947-1961. PubMed ID: 29442555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles.
    Khakhalin AS; Koren D; Gu J; Xu H; Aizenman CD
    Eur J Neurosci; 2014 Sep; 40(6):2948-62. PubMed ID: 24995793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit.
    Pratt KG; Aizenman CD
    J Neurosci; 2007 Aug; 27(31):8268-77. PubMed ID: 17670973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum.
    Hamodi AS; Pratt KG
    J Neurophysiol; 2015 Jan; 113(1):400-7. PubMed ID: 25343786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.
    Pratt KG; Dong W; Aizenman CD
    Nat Neurosci; 2008 Apr; 11(4):467-75. PubMed ID: 18344990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological Recording for Study of
    Luo Y; Shen W; Cline HT
    Cold Spring Harb Protoc; 2021 Jun; 2021(6):. PubMed ID: 33785560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo.
    Aizenman CD; Akerman CJ; Jensen KR; Cline HT
    Neuron; 2003 Aug; 39(5):831-42. PubMed ID: 12948449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of multisensory convergence in the Xenopus optic tectum.
    Deeg KE; Sears IB; Aizenman CD
    J Neurophysiol; 2009 Dec; 102(6):3392-404. PubMed ID: 19793878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition.
    Felch DL; Khakhalin AS; Aizenman CD
    Elife; 2016 May; 5():. PubMed ID: 27218449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo single-cell excitability probing of neuronal ensembles in the intact and awake developing Xenopus brain.
    Dunfield D; Haas K
    Nat Protoc; 2010 May; 5(5):841-8. PubMed ID: 20379139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Experience Facilitates BDNF-Dependent Adaptive Recruitment of New Neurons in the Postembryonic Optic Tectum.
    Hall ZJ; Tropepe V
    J Neurosci; 2018 Feb; 38(8):2000-2014. PubMed ID: 29363581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity.
    Ciarleglio CM; Khakhalin AS; Wang AF; Constantino AC; Yip SP; Aizenman CD
    Elife; 2015 Nov; 4():. PubMed ID: 26568314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensory-Evoked Spiking Behavior Emerges via an Experience-Dependent Plasticity Mechanism.
    van Rheede JJ; Richards BA; Akerman CJ
    Neuron; 2015 Sep; 87(5):1050-62. PubMed ID: 26335647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cellular mechanism for inverse effectiveness in multisensory integration.
    Truszkowski TL; Carrillo OA; Bleier J; Ramirez-Vizcarrondo CM; Felch DL; McQuillan M; Truszkowski CP; Khakhalin AS; Aizenman CD
    Elife; 2017 Mar; 6():. PubMed ID: 28315524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development.
    He HY; Shen W; Hiramoto M; Cline HT
    Neuron; 2016 Jun; 90(6):1203-1214. PubMed ID: 27238867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl.
    Brainard MS; Knudsen EI
    J Neurophysiol; 1995 Feb; 73(2):595-614. PubMed ID: 7760121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.