BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31291453)

  • 1. Fluorescent signals associated with respiratory Complex I revealed conformational changes in the catalytic site.
    Verkhovskaya M; Belevich N
    FEMS Microbiol Lett; 2019 Jun; 366(12):. PubMed ID: 31291453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ins and outs of the flavin mononucleotide cofactor of respiratory complex I.
    Curtabbi A; Enríquez JA
    IUBMB Life; 2022 Jul; 74(7):629-644. PubMed ID: 35166025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The flavoprotein subcomplex of complex I (NADH:ubiquinone oxidoreductase) from bovine heart mitochondria: insights into the mechanisms of NADH oxidation and NAD+ reduction from protein film voltammetry.
    Barker CD; Reda T; Hirst J
    Biochemistry; 2007 Mar; 46(11):3454-64. PubMed ID: 17323923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Electron Transfer Pathway of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae.
    Juárez O; Morgan JE; Barquera B
    J Biol Chem; 2009 Mar; 284(13):8963-72. PubMed ID: 19155212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I.
    Gladyshev GV; Grivennikova VG; Vinogradov AD
    FEBS Lett; 2018 Jul; 592(13):2213-2219. PubMed ID: 29851085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible FMN dissociation from Escherichia coli respiratory complex I.
    Holt PJ; Efremov RG; Nakamaru-Ogiso E; Sazanov LA
    Biochim Biophys Acta; 2016 Nov; 1857(11):1777-1785. PubMed ID: 27555334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of respiratory complex I.
    Friedrich T
    J Bioenerg Biomembr; 2014 Aug; 46(4):255-68. PubMed ID: 25022766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible, electrochemical interconversion of NADH and NAD+ by the catalytic (Ilambda) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Zu Y; Shannon RJ; Hirst J
    J Am Chem Soc; 2003 May; 125(20):6020-1. PubMed ID: 12785808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I).
    Gostimskaya IS; Grivennikova VG; Cecchini G; Vinogradov AD
    FEBS Lett; 2007 Dec; 581(30):5803-6. PubMed ID: 18037377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the origins of superoxide and hydrogen peroxide in the mammalian NADH:ubiquinone oxidoreductase.
    Bazil JN; Pannala VR; Dash RK; Beard DA
    Free Radic Biol Med; 2014 Dec; 77():121-9. PubMed ID: 25236739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single amino acid residue controls ROS production in the respiratory Complex I from Escherichia coli.
    Knuuti J; Belevich G; Sharma V; Bloch DA; Verkhovskaya M
    Mol Microbiol; 2013 Dec; 90(6):1190-200. PubMed ID: 24325249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman spectral properties of FMN of bovine heart NADH:ubiquinone oxidoreductase suggesting a mechanism for the prevention of spontaneous production of reactive oxygen species.
    Hikita M; Shinzawa-Itoh K; Moriyama M; Ogura T; Kihira K; Yoshikawa S
    Biochemistry; 2013 Jan; 52(1):98-104. PubMed ID: 23215454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic interactions between FeS clusters in NADH:ubiquinone oxidoreductase (Complex I) from Escherichia coli.
    Euro L; Bloch DA; Wikström M; Verkhovsky MI; Verkhovskaya M
    Biochemistry; 2008 Mar; 47(10):3185-93. PubMed ID: 18269245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of NADH binding, hydride transfer, and NAD(+) dissociation during NADH oxidation by mitochondrial complex I using modified nicotinamide nucleotides.
    Birrell JA; Hirst J
    Biochemistry; 2013 Jun; 52(23):4048-55. PubMed ID: 23683271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bovine heart NADH-ubiquinone oxidoreductase contains one molecule of ubiquinone with ten isoprene units as one of the cofactors.
    Shinzawa-Itoh K; Seiyama J; Terada H; Nakatsubo R; Naoki K; Nakashima Y; Yoshikawa S
    Biochemistry; 2010 Jan; 49(3):487-92. PubMed ID: 19961238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion.
    de Vries S; Dörner K; Strampraad MJ; Friedrich T
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2844-8. PubMed ID: 25600069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of flavin in mitochondrial NADH:ubiquinone oxidoreductase (complex I).
    Sled VD; Rudnitzky NI; Hatefi Y; Ohnishi T
    Biochemistry; 1994 Aug; 33(33):10069-75. PubMed ID: 8060976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics and Dynamics of Proton-Coupled Electron Transfer in the NADH/FMN Site of Respiratory Complex I.
    Saura P; Kaila VRI
    J Am Chem Soc; 2019 Apr; 141(14):5710-5719. PubMed ID: 30873834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I.
    Birrell JA; King MS; Hirst J
    FEBS Lett; 2011 Jul; 585(14):2318-22. PubMed ID: 21664911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.