These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31291506)
1. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. Wang L; Ayaz H; Izzetoglu M J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506 [TBL] [Abstract][Full Text] [Related]
2. Scalp and skull influence on near infrared photon propagation in the Colin27 brain template. Strangman GE; Zhang Q; Li Z Neuroimage; 2014 Jan; 85 Pt 1():136-49. PubMed ID: 23660029 [TBL] [Abstract][Full Text] [Related]
3. Quantifying tissue optical properties of human heads in vivo using continuous-wave near-infrared spectroscopy and subject-specific three-dimensional Monte Carlo models. Kao TC; Sung KB J Biomed Opt; 2022 Jun; 27(8):. PubMed ID: 35733242 [TBL] [Abstract][Full Text] [Related]
4. Effects of Different Optical Properties of Head Tissues on Near-Infrared Spectroscopy Using Monte Carlo Simulations. Russomanno E; Kalyanov A; Jiang J; Ackermann M; Wolf M Adv Exp Med Biol; 2022; 1395():39-43. PubMed ID: 36527611 [TBL] [Abstract][Full Text] [Related]
5. Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data. Chuang CC; Chen CM; Hsieh YS; Liu TC; Sun CW J Biophotonics; 2013 Mar; 6(3):267-74. PubMed ID: 22678984 [TBL] [Abstract][Full Text] [Related]
6. Influence of extracerebral layers on estimates of optical properties with continuous wave near infrared spectroscopy: analysis based on multi-layered brain tissue architecture and Monte Carlo simulation. Zhang Y; Liu X; Wang Q; Liu D; Yang C; Sun J Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):144-150. PubMed ID: 30676092 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo Characterization of Short-Wave Infrared Optical Wavelengths for Biosensing Applications. Budidha K; Chatterjee S; Qassem M; Kyriacou PA Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4285-4288. PubMed ID: 34892169 [TBL] [Abstract][Full Text] [Related]
8. Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Okada E; Delpy DT Appl Opt; 2003 Jun; 42(16):2915-22. PubMed ID: 12790440 [TBL] [Abstract][Full Text] [Related]
9. Dual Layered Models of Light Scattering in the Near Infrared A: Optical Measurements and Simulation Almajidy RK; Rackebrandt K; Gehring H; Hofmann UG Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4770-4774. PubMed ID: 31946928 [TBL] [Abstract][Full Text] [Related]
10. Depth sensitivity analysis of functional near-infrared spectroscopy measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Mansouri C; L'huillier JP; Kashou NH; Humeau A Lasers Med Sci; 2010 May; 25(3):431-8. PubMed ID: 20143117 [TBL] [Abstract][Full Text] [Related]
11. Depth sensitivity and source-detector separations for near infrared spectroscopy based on the Colin27 brain template. Strangman GE; Li Z; Zhang Q PLoS One; 2013; 8(8):e66319. PubMed ID: 23936292 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of light detector surface area for functional Near Infrared Spectroscopy. Wang L; Ayaz H; Izzetoglu M; Onaral B Comput Biol Med; 2017 Oct; 89():68-75. PubMed ID: 28787647 [TBL] [Abstract][Full Text] [Related]
13. Contribution of speckle noise in near-infrared spectroscopy measurements. Ortega-Martinez A; Zimmermann B; Cheng X; Li X; Yucel MA; Boas DA J Biomed Opt; 2019 Oct; 24(10):1-6. PubMed ID: 31668028 [TBL] [Abstract][Full Text] [Related]
14. A Monte Carlo study of near infrared light propagation in the human head with lesions-a time-resolved approach. Vera DA; GarcĂa HA; Victoria Waks Serra M; Baez GR; Iriarte DI; Pomarico JA Biomed Phys Eng Express; 2022 Mar; 8(3):. PubMed ID: 35235912 [TBL] [Abstract][Full Text] [Related]
15. Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model. Chatterjee S; Phillips JP; Kyriacou PA Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3279-82. PubMed ID: 26736992 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved subtraction method for measuring optical properties of turbid media. Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605 [TBL] [Abstract][Full Text] [Related]
17. Monte-Carlo simulation of light transport for NIRS measurements in tumors of elliptic geometry. Pavlin M; Jarm T; Miklavcic D Adv Exp Med Biol; 2003; 530():41-9. PubMed ID: 14562703 [TBL] [Abstract][Full Text] [Related]
18. RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study. Zhang Y; Sun JW; Rolfe P Physiol Meas; 2012 Jun; 33(6):925-42. PubMed ID: 22551687 [TBL] [Abstract][Full Text] [Related]
19. Dual Layered Models of Light Scattering in the Near Infrared B: Experimental Results with a Phantom Almajidy RK; Rackebrandt K; Gehring H; Hofmann UG Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4775-4778. PubMed ID: 31946929 [TBL] [Abstract][Full Text] [Related]
20. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. Hallacoglu B; Sassaroli A; Fantini S PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]