BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31291541)

  • 1. Producing Gram-Scale Unnatural Rosavin Analogues from Glucose by Engineered
    Bi H; Wang S; Zhou W; Zhuang Y; Liu T
    ACS Synth Biol; 2019 Aug; 8(8):1931-1940. PubMed ID: 31291541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction.
    Bi H; Qu G; Wang S; Zhuang Y; Sun Z; Liu T; Ma Y
    Metab Eng; 2022 Jan; 69():15-25. PubMed ID: 34715353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli.
    Li L; Liu M; Bi H; Liu T
    Metab Eng; 2024 Mar; 82():274-285. PubMed ID: 38428730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Cinnamyl Alcohol Glucoside from Glucose in Escherichia coli.
    Zhou W; Bi H; Zhuang Y; He Q; Yin H; Liu T; Ma Y
    J Agric Food Chem; 2017 Mar; 65(10):2129-2135. PubMed ID: 28229589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii.
    Grech-Baran M; Sykłowska-Baranek K; Krajewska-Patan A; Wyrwał A; Pietrosiuk A
    Biotechnol Lett; 2014 Mar; 36(3):649-56. PubMed ID: 24190481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LC/MS/MS identification of glycosides produced by biotransformation of cinnamyl alcohol in Rhodiola rosea compact callus aggregates.
    Tolonen A; György Z; Jalonen J; Neubauer P; Hohtola A
    Biomed Chromatogr; 2004 Oct; 18(8):550-8. PubMed ID: 15386517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the Content of the Glycosides, Aglycons and their Possible Precursors of Rhodiola rosea during the Vegetation Period.
    Mirmazloum I; Ladányi M; György Z
    Nat Prod Commun; 2015 Aug; 10(8):1413-6. PubMed ID: 26434130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of cinnamyl glycosides in compact callus aggregate cultures of Rhodiola rosea through biotransformation of cinnamyl alcohol.
    György Z; Hohtola A
    Methods Mol Biol; 2009; 547():305-12. PubMed ID: 19521854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome and tissue-specific expression analysis of genes reveal tissue-cultured plants as an alternative source for phenylethanoids and phenylpropanoids in Rhodiola imbricata (Edgew.).
    Rattan S; Kumar P; Kaur E; Sood A; Acharya V; Warghat AR
    Gene; 2022 Aug; 836():146672. PubMed ID: 35714804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient biosynthesis of cinnamyl alcohol by engineered Escherichia coli overexpressing carboxylic acid reductase in a biphasic system.
    Zhang C; Xu Q; Hou H; Wu J; Zheng Z; Ouyang J
    Microb Cell Fact; 2020 Aug; 19(1):163. PubMed ID: 32787860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the Quality and Potential Efficacy of Commercial Extracts of
    Dimpfel W; Schombert L; Panossian AG
    Front Pharmacol; 2018; 9():425. PubMed ID: 29881348
    [No Abstract]   [Full Text] [Related]  

  • 12. Phenylpropanoid glycosides from Rhodiola rosea.
    Tolonen A; Pakonen M; Hohtola A; Jalonen J
    Chem Pharm Bull (Tokyo); 2003 Apr; 51(4):467-70. PubMed ID: 12673010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability of Major Phenyletanes and Phenylpropanoids in 16-Year-Old
    Elameen A; Kosman VM; Thomsen M; Pozharitskaya ON; Shikov AN
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751483
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rosavin: Research Advances in Extraction and Synthesis, Pharmacological Activities and Therapeutic Effects on Diseases of the Characteristic Active Ingredients of
    Wang S; Feng Y; Zheng L; He P; Tan J; Cai J; Wu M; Ye X
    Molecules; 2023 Nov; 28(21):. PubMed ID: 37959831
    [No Abstract]   [Full Text] [Related]  

  • 16. Bioactive compounds produced by clones of Rhodiola rosea maintained in the Norwegian germplasm collection.
    Elameen A; Dragland S; Klemsdal SS
    Pharmazie; 2010 Aug; 65(8):618-23. PubMed ID: 20824964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of salidroside in metabolically engineered Escherichia coli.
    Bai Y; Bi H; Zhuang Y; Liu C; Cai T; Liu X; Zhang X; Liu T; Ma Y
    Sci Rep; 2014 Oct; 4():6640. PubMed ID: 25323006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae.
    Gottardi M; Knudsen JD; Prado L; Oreb M; Branduardi P; Boles E
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4883-4893. PubMed ID: 28353001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of
    Shikov AN; Kosman VM; Flissyuk EV; Smekhova IE; Elameen A; Pozharitskaya ON
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological, Histochemical and Biochemical Features of Cultivated
    Erst AA; Petruk AA; Zibareva LN; Erst AS
    Contemp Probl Ecol; 2021; 14(6):701-710. PubMed ID: 34956551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.