BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 31291944)

  • 1. Synthesis and biomedical applications of nanoceria, a redox active nanoparticle.
    Thakur N; Manna P; Das J
    J Nanobiotechnology; 2019 Jul; 17(1):84. PubMed ID: 31291944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical applications of nanoceria: new roles for an old player.
    Kargozar S; Baino F; Hoseini SJ; Hamzehlou S; Darroudi M; Verdi J; Hasanzadeh L; Kim HW; Mozafari M
    Nanomedicine (Lond); 2018 Dec; 13(23):3051-3069. PubMed ID: 30507347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues.
    Lord MS; Berret JF; Singh S; Vinu A; Karakoti AS
    Small; 2021 Dec; 17(51):e2102342. PubMed ID: 34363314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells.
    Vassie JA; Whitelock JM; Lord MS
    Acta Biomater; 2017 Mar; 50():127-141. PubMed ID: 27940194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular antioxidants dissolve man-made antioxidant nanoparticles: using redox vulnerability of nanoceria to develop a responsive drug delivery system.
    Muhammad F; Wang A; Qi W; Zhang S; Zhu G
    ACS Appl Mater Interfaces; 2014; 6(21):19424-33. PubMed ID: 25312332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Delivery and Redox Activity of Folic Acid-Functionalized Nanoceria in Tumor Cells.
    Vassie JA; Whitelock JM; Lord MS
    Mol Pharm; 2018 Mar; 15(3):994-1004. PubMed ID: 29397735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant potentials of nanoceria synthesized by solution plasma process and its biocompatibility study.
    Davoodbasha M; Park BR; Rhee WJ; Lee SY; Kim JW
    Arch Biochem Biophys; 2018 May; 645():42-49. PubMed ID: 29427590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities.
    Wu Y; Ta HT
    J Mater Chem B; 2021 Sep; 9(36):7291-7301. PubMed ID: 34355717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoceria: an innovative strategy for cancer treatment.
    Tang JLY; Moonshi SS; Ta HT
    Cell Mol Life Sci; 2023 Jan; 80(2):46. PubMed ID: 36656411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth.
    Alpaslan E; Geilich BM; Yazici H; Webster TJ
    Sci Rep; 2017 Apr; 7():45859. PubMed ID: 28387344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering.
    Sadidi H; Hooshmand S; Ahmadabadi A; Javad Hosseini S; Baino F; Vatanpour M; Kargozar S
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33036163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion.
    Ciofani G; Genchi GG; Liakos I; Cappello V; Gemmi M; Athanassiou A; Mazzolai B; Mattoli V
    Pharm Res; 2013 Aug; 30(8):2133-45. PubMed ID: 23661146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Will the Bacteria Survive in the CeO
    Zhu W; Wang L; Li Q; Jiao L; Yu X; Gao X; Qiu H; Zhang Z; Bing W
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34205408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotherapeutic potential of antibacterial folic acid-functionalized nanoceria for wound-healing applications.
    Sarkar K; Dutta K; Chatterjee A; Sarkar J; Das D; Prasad A; Chattopadhyay D; Acharya K; Das M; Verma SK; De S
    Nanomedicine (Lond); 2023 Jan; 18(2):109-123. PubMed ID: 36853798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.
    Bhushan B; Nandhagopal S; Rajesh Kannan R; Gopinath P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():375-86. PubMed ID: 27388966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles.
    Lord MS; Tsoi B; Gunawan C; Teoh WY; Amal R; Whitelock JM
    Biomaterials; 2013 Nov; 34(34):8808-18. PubMed ID: 23942211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice.
    Hirst SM; Karakoti A; Singh S; Self W; Tyler R; Seal S; Reilly CM
    Environ Toxicol; 2013 Feb; 28(2):107-18. PubMed ID: 21618676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoceria acts as antioxidant in tumoral and transformed cells.
    Rubio L; Marcos R; Hernández A
    Chem Biol Interact; 2018 Aug; 291():7-15. PubMed ID: 29879412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ROS-Mediated Anti-Angiogenic Activity of Cerium Oxide Nanoparticles in Melanoma Cells.
    Yong JM; Fu L; Tang F; Yu P; Kuchel RP; Whitelock JM; Lord MS
    ACS Biomater Sci Eng; 2022 Feb; 8(2):512-525. PubMed ID: 34989230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerium oxide nanomaterial with dual antioxidative scavenging potential: Synthesis and characterization.
    Singh S; Kumar U; Gittess D; Sakthivel TS; Babu B; Seal S
    J Biomater Appl; 2021 Nov; 36(5):834-842. PubMed ID: 33910397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.