BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31292227)

  • 1. Staphylococcus aureus Coproporphyrinogen III Oxidase Is Required for Aerobic and Anaerobic Heme Synthesis.
    Choby JE; Skaar EP
    mSphere; 2019 Jul; 4(4):. PubMed ID: 31292227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation.
    Xu K; Delling J; Elliott T
    J Bacteriol; 1992 Jun; 174(12):3953-63. PubMed ID: 1317844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase.
    Troup B; Hungerer C; Jahn D
    J Bacteriol; 1995 Jun; 177(11):3326-31. PubMed ID: 7768836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial photosensitization through activation of coproporphyrinogen oxidase.
    Surdel MC; Horvath DJ; Lojek LJ; Fullen AR; Simpson J; Dutter BF; Salleng KJ; Ford JB; Jenkins JL; Nagarajan R; Teixeira PL; Albertolle M; Georgiev IS; Jansen ED; Sulikowski GA; Lacy DB; Dailey HA; Skaar EP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):E6652-E6659. PubMed ID: 28739897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The alternative coproporphyrinogen III oxidase (CgoN) catalyzes the oxygen-independent conversion of coproporphyrinogen III into coproporphyrin III.
    Mingers T; Barthels S; Mass V; Acuña JMB; Biedendieck R; Cooke A; Dailey TA; Gerdes S; Blankenfeldt W; Dailey HA; Warren MJ; Jahn M; Jahn D
    Front Microbiol; 2024; 15():1378989. PubMed ID: 38544863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Alcaligenes eutrophus hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase, is required for heme biosynthesis during anaerobic growth.
    Lieb C; Siddiqui RA; Hippler B; Jahn D; Friedrich B
    Arch Microbiol; 1998 Jan; 169(1):52-60. PubMed ID: 9396835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional control of Bacillus subtilis hemN and hemZ.
    Homuth G; Rompf A; Schumann W; Jahn D
    J Bacteriol; 1999 Oct; 181(19):5922-9. PubMed ID: 10498703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host.
    Hammer ND; Reniere ML; Cassat JE; Zhang Y; Hirsch AO; Indriati Hood M; Skaar EP
    mBio; 2013 Jul; 4(4):. PubMed ID: 23900169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional differentiation of two analogous coproporphyrinogen III oxidases for heme and chlorophyll biosynthesis pathways in the cyanobacterium Synechocystis sp. PCC 6803.
    Goto T; Aoki R; Minamizaki K; Fujita Y
    Plant Cell Physiol; 2010 Apr; 51(4):650-63. PubMed ID: 20194361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protoporphyrin formation in Rhizobium japonicum.
    Keithly JH; Nadler KD
    J Bacteriol; 1983 May; 154(2):838-45. PubMed ID: 6841317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the late steps of microbial heme synthesis: conversion of coproporphyrinogen to protoporphyrin.
    Jacobs NJ; Jacobs JM; Brent P
    J Bacteriol; 1971 Jul; 107(1):203-9. PubMed ID: 4935319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of the Shewanella oneidensis major oxygen-independent coproporphyrinogen III oxidase gene.
    Al-Sheboul S; Saffarini D
    Anaerobe; 2011 Dec; 17(6):501-5. PubMed ID: 21726654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staphylococcus aureus haem biosynthesis: characterisation of the enzymes involved in final steps of the pathway.
    Lobo SA; Scott A; Videira MA; Winpenny D; Gardner M; Palmer MJ; Schroeder S; Lawrence AD; Parkinson T; Warren MJ; Saraiva LM
    Mol Microbiol; 2015 Aug; 97(3):472-87. PubMed ID: 25908396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CtaM Is Required for Menaquinol Oxidase aa3 Function in Staphylococcus aureus.
    Hammer ND; Schurig-Briccio LA; Gerdes SY; Gennis RB; Skaar EP
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406563
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Key M; Baptista CG; Bergmann A; Floyd K; Blader IJ; Dou Z
    mSphere; 2024 Mar; 9(3):e0009224. PubMed ID: 38411121
    [No Abstract]   [Full Text] [Related]  

  • 16.
    Choby JE; Grunenwald CM; Celis AI; Gerdes SY; DuBois JL; Skaar EP
    mBio; 2018 Feb; 9(1):. PubMed ID: 29437922
    [No Abstract]   [Full Text] [Related]  

  • 17. The HemQ coprohaem decarboxylase generates reactive oxygen species: implications for the evolution of classical haem biosynthesis.
    Hobbs C; Dailey HA; Shepherd M
    Biochem J; 2016 Nov; 473(21):3997-4009. PubMed ID: 27597779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coproporphyrin excretion by Azorhizobium caulinodans under micro-aerobic conditions.
    Pronk AF; Stigter J; Stouthamer AH; de Bruijn FJ; Boogerd FC
    Antonie Van Leeuwenhoek; 1998 Nov; 74(4):245-51. PubMed ID: 10081584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning, DNA sequence, and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-independent coproporphyrinogen III oxidase.
    Xu K; Elliott T
    J Bacteriol; 1994 Jun; 176(11):3196-203. PubMed ID: 8195073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr.
    Rompf A; Hungerer C; Hoffmann T; Lindenmeyer M; Römling U; Gross U; Doss MO; Arai H; Igarashi Y; Jahn D
    Mol Microbiol; 1998 Aug; 29(4):985-97. PubMed ID: 9767567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.