These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31292451)

  • 1. Strength of carbon nanotubes depends on their chemical structures.
    Takakura A; Beppu K; Nishihara T; Fukui A; Kozeki T; Namazu T; Miyauchi Y; Itami K
    Nat Commun; 2019 Jul; 10(1):3040. PubMed ID: 31292451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulations and Theoretical Model for Engineering Tensile Properties of Single-and Multi-Walled Carbon Nanotubes.
    Shirasu K; Kitayama S; Liu F; Yamamoto G; Hashida T
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.
    Liou KH; Tsou NT; Kang DY
    Nanoscale; 2015 Oct; 7(39):16222-9. PubMed ID: 26204559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse electric field-induced deformation of armchair single-walled carbon nanotube.
    Kan B; Ding J; Yuan N; Wang J; Chen Z; Chen X
    Nanoscale Res Lett; 2010 May; 5(7):1144-9. PubMed ID: 20596520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.
    Rouhi S; Alizadeh Y; Ansari R
    J Mol Model; 2016 Jan; 22(1):41. PubMed ID: 26791535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of atomic vacancies and temperature on the tensile properties of single-walled MoS
    Xiong QL; Zhang J; Xiao C; Li ZH
    Phys Chem Chem Phys; 2017 Aug; 19(30):19948-19958. PubMed ID: 28722056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction.
    Qin LC
    Phys Chem Chem Phys; 2007 Jan; 9(1):31-48. PubMed ID: 17164886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects.
    Wang MS; Golberg D; Bando Y
    Adv Mater; 2010 Sep; 22(36):4071-5. PubMed ID: 20717989
    [No Abstract]   [Full Text] [Related]  

  • 10. An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan.
    Saha LC; Nag OK; Doughty A; Liu H; Chen WR
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802313. PubMed ID: 30261832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes.
    Liu K; Zhu F; Liu L; Sun Y; Fan S; Jiang K
    Nanoscale; 2012 Jun; 4(11):3389-93. PubMed ID: 22538869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube bundles with tensile strength over 80 GPa.
    Bai Y; Zhang R; Ye X; Zhu Z; Xie H; Shen B; Cai D; Liu B; Zhang C; Jia Z; Zhang S; Li X; Wei F
    Nat Nanotechnol; 2018 Jul; 13(7):589-595. PubMed ID: 29760522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An atlas of carbon nanotube optical transitions.
    Liu K; Deslippe J; Xiao F; Capaz RB; Hong X; Aloni S; Zettl A; Wang W; Bai X; Louie SG; Wang E; Wang F
    Nat Nanotechnol; 2012 Apr; 7(5):325-9. PubMed ID: 22504706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of group IV single-walled nanotubes: a finite element approach based on the density functional theory.
    Dastmard M; Ansari R; Rouhi S
    J Mol Model; 2021 May; 27(6):163. PubMed ID: 33970328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.
    Hou Y; Tang J; Zhang H; Qian C; Feng Y; Liu J
    ACS Nano; 2009 May; 3(5):1057-62. PubMed ID: 19397293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consideration of critical axial properties of pristine and defected carbon nanotubes under compression.
    Ranjbartoreh AR; Su D; Wang G
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5025-9. PubMed ID: 22905571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical study of the 13C NMR spectroscopy of single-walled carbon nanotubes.
    Besley NA; Titman JJ; Wright MD
    J Am Chem Soc; 2005 Dec; 127(50):17948-53. PubMed ID: 16351126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dentin surface modification using carbon nanotubes on dental bonding and antibacterial ability.
    Suo L; Li Z; Luo F; Chen J; Jia L; Wang T; Pei X; Wan Q
    Dent Mater J; 2018 Mar; 37(2):229-236. PubMed ID: 29109338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the electronic structure of single-walled GeS nanotubes.
    Yu D; Ku R; Hu Y; Wei Y; Zhu C; Liu Z; Zhang G; Li W; Yang J; Li X
    RSC Adv; 2022 Oct; 12(45):29291-29299. PubMed ID: 36320760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.