These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31292571)

  • 1. Sulfur-anchored azulene as a cathode material for Li-S batteries.
    Chen Z; Droste J; Zhai G; Zhu J; Yang J; Hansen MR; Zhuang X
    Chem Commun (Camb); 2019 Aug; 55(61):9047-9050. PubMed ID: 31292571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined first-principles statistical mechanics approach to sulfur structure in organic cathode hosts for polymer based lithium-sulfur (Li-S) batteries.
    Schütze Y; de Oliveira Silva R; Ning J; Rappich J; Lu Y; Ruiz VG; Bande A; Dzubiella J
    Phys Chem Chem Phys; 2021 Dec; 23(47):26709-26720. PubMed ID: 34842867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries.
    Xiao J; Liu Z; Zhang W; Deng N; Liu J; Zhao F
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hand-in-Hand Reinforced rGO Film Used as an Auxiliary Functional Layer for High-Performance Li-S Batteries.
    Wu F; Zhao S; Li J; Lu Y; Su Y; Chen L; Bao L; Yao J; Liu X
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12544-12553. PubMed ID: 30864779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries.
    Mi Y; Liu W; Yang KR; Jiang J; Fan Q; Weng Z; Zhong Y; Wu Z; Brudvig GW; Batista VS; Zhou H; Wang H
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14818-14822. PubMed ID: 27779359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries.
    Gomez I; Leonet O; Blazquez JA; Mecerreyes D
    ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nitride Phosphorus as an Effective Lithium Polysulfide Adsorbent for Lithium-Sulfur Batteries.
    Do V; Deepika ; Kim MS; Kim MS; Lee KR; Cho WI
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11431-11441. PubMed ID: 30874419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous MoS
    Ye H; Ma L; Zhou Y; Wang L; Han N; Zhao F; Deng J; Wu T; Li Y; Lu J
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13091-13096. PubMed ID: 29180431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dual-Function Na
    Luo C; Lv W; Deng Y; Zhou G; Pan ZZ; Niu S; Li B; Kang F; Yang QH
    Small; 2017 Jul; 13(27):. PubMed ID: 28544446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries.
    Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L
    Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capability.
    Dirlam PT; Park J; Simmonds AG; Domanik K; Arrington CB; Schaefer JL; Oleshko VP; Kleine TS; Char K; Glass RS; Soles CL; Kim C; Pinna N; Sung YE; Pyun J
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13437-48. PubMed ID: 27171646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries.
    Li Y; Cai Q; Wang L; Li Q; Peng X; Gao B; Huo K; Chu PK
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23784-92. PubMed ID: 27552961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Bond Chemistry in Lithium-Sulfur Batteries.
    Hou TZ; Xu WT; Chen X; Peng HJ; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8178-8182. PubMed ID: 28520218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles calculations of oxidation potentials of electrolytes in lithium-sulfur batteries and their variations with changes in environment.
    Han J; Balbuena PB
    Phys Chem Chem Phys; 2018 Jul; 20(27):18811-18827. PubMed ID: 29964286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust, Ultra-Tough Flexible Cathodes for High-Energy Li-S Batteries.
    Chung SH; Chang CH; Manthiram A
    Small; 2016 Feb; 12(7):939-50. PubMed ID: 26715383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the effect of boron doping on sulfur/carbon cathode in lithium-sulfur batteries.
    Yang CP; Yin YX; Ye H; Jiang KC; Zhang J; Guo YG
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8789-95. PubMed ID: 24764111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Energy-Density Li-S Batteries with Additional Elemental Sulfur Coated on a Thin-Film Separator.
    Yoon E; Park JW; Kang JK; Kim S; Jung Y
    J Nanosci Nanotechnol; 2019 Aug; 19(8):4715-4718. PubMed ID: 30913775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.