These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31292846)

  • 1. Using Deep Neural Networks to Reconstruct Non-uniformly Sampled NMR Spectra.
    Hansen DF
    J Biomol NMR; 2019 Nov; 73(10-11):577-585. PubMed ID: 31292846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FID-Net: A versatile deep neural network architecture for NMR spectral reconstruction and virtual decoupling.
    Karunanithy G; Hansen DF
    J Biomol NMR; 2021 May; 75(4-5):179-191. PubMed ID: 33870472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast reconstruction of non-uniform sampling multidimensional NMR spectroscopy via a deep neural network.
    Luo J; Zeng Q; Wu K; Lin Y
    J Magn Reson; 2020 Aug; 317():106772. PubMed ID: 32589585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data.
    Ying J; Delaglio F; Torchia DA; Bax A
    J Biomol NMR; 2017 Jun; 68(2):101-118. PubMed ID: 27866371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-uniform sampling of NMR relaxation data.
    Linnet TE; Teilum K
    J Biomol NMR; 2016 Feb; 64(2):165-73. PubMed ID: 26847574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling.
    Hyberts SG; Milbradt AG; Wagner AB; Arthanari H; Wagner G
    J Biomol NMR; 2012 Apr; 52(4):315-27. PubMed ID: 22331404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DEEP picker is a deep neural network for accurate deconvolution of complex two-dimensional NMR spectra.
    Li DW; Hansen AL; Yuan C; Bruschweiler-Li L; Brüschweiler R
    Nat Commun; 2021 Sep; 12(1):5229. PubMed ID: 34471142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra.
    Hyberts SG; Robson SA; Wagner G
    J Biomol NMR; 2013 Feb; 55(2):167-78. PubMed ID: 23274692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating 2D NMR relaxation dispersion experiments using iterated maps.
    Rovny J; Blum RL; Loria JP; Barrett SE
    J Biomol NMR; 2019 Nov; 73(10-11):561-576. PubMed ID: 31280454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of non-uniformly sampled five-dimensional NMR spectra by signal separation algorithm.
    Kosiński K; Stanek J; Górka MJ; Żerko S; Koźmiński W
    J Biomol NMR; 2017 Jun; 68(2):129-138. PubMed ID: 28243768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental and practical aspects of machine learning for the peak picking of biomolecular NMR spectra.
    Li DW; Hansen AL; Bruschweiler-Li L; Yuan C; Brüschweiler R
    J Biomol NMR; 2022 Jun; 76(3):49-57. PubMed ID: 35389128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast multi-dimensional NMR acquisition and processing using the sparse FFT.
    Hassanieh H; Mayzel M; Shi L; Katabi D; Orekhov VY
    J Biomol NMR; 2015 Sep; 63(1):9-19. PubMed ID: 26123316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.
    Wu Y; Ma Y; Capaldi DP; Liu J; Zhao W; Du J; Xing L
    Magn Reson Imaging; 2020 Feb; 66():93-103. PubMed ID: 30880112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards autonomous analysis of chemical exchange saturation transfer experiments using deep neural networks.
    Karunanithy G; Yuwen T; Kay LE; Hansen DF
    J Biomol NMR; 2022 Jun; 76(3):75-86. PubMed ID: 35622310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaching the sparse-sampling limit for reconstructing a single peak in a 2D NMR spectrum using iterated maps.
    Blum RL; Rovny J; Loria JP; Barrett SE
    J Biomol NMR; 2019 Nov; 73(10-11):545-560. PubMed ID: 31292847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning.
    Wang S; Wu R; Jia S; Diakite A; Li C; Liu Q; Zheng H; Ying L
    Magn Reson Med; 2024 Aug; 92(2):496-518. PubMed ID: 38624162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High fidelity sampling schedules for NMR spectra of high dynamic range.
    Hyberts SG; Wagner G
    J Magn Reson; 2022 Jun; 339():107228. PubMed ID: 35550910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonuniform Sampling for NMR Spectroscopy.
    Robson S; Arthanari H; Hyberts SG; Wagner G
    Methods Enzymol; 2019; 614():263-291. PubMed ID: 30611427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.