These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31292995)

  • 21. Bayesian outbreak detection in the presence of reporting delays.
    Salmon M; Schumacher D; Stark K; Höhle M
    Biom J; 2015 Nov; 57(6):1051-67. PubMed ID: 26250543
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correcting delayed reporting of COVID-19 using the generalized-Dirichlet-multinomial method.
    Stoner O; Halliday A; Economou T
    Biometrics; 2023 Sep; 79(3):2537-2550. PubMed ID: 36484382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Google dengue trends: An indicator of epidemic behavior. The Venezuelan Case.
    Strauss RA; Castro JS; Reintjes R; Torres JR
    Int J Med Inform; 2017 Aug; 104():26-30. PubMed ID: 28599813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the estimation of the reproduction number based on misreported epidemic data.
    Azmon A; Faes C; Hens N
    Stat Med; 2014 Mar; 33(7):1176-92. PubMed ID: 24122943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Bayesian Spatiotemporal Nowcasting Model for Public Health Decision-Making and Surveillance.
    Kline D; Hyder A; Liu E; Rayo M; Malloy S; Root E
    Am J Epidemiol; 2022 May; 191(6):1107-1115. PubMed ID: 35225333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A joint Bayesian framework for missing data and measurement error using integrated nested Laplace approximations.
    Skarstein E; Martino S; Muff S
    Biom J; 2023 Dec; 65(8):e2300078. PubMed ID: 37740134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multivariate hierarchical frameworks for modeling delayed reporting in count data.
    Stoner O; Economou T
    Biometrics; 2020 Sep; 76(3):789-798. PubMed ID: 31737902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A rapid assessment of the implementation of integrated disease surveillance and response system in Northeast Nigeria, 2017.
    Ibrahim LM; Stephen M; Okudo I; Kitgakka SM; Mamadu IN; Njai IF; Oladele S; Garba S; Ojo O; Ihekweazu C; Lasuba CLP; Yahaya AA; Nsubuga P; Alemu W
    BMC Public Health; 2020 May; 20(1):600. PubMed ID: 32357933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Bayesian approach for estimating under-reported dengue incidence with a focus on non-linear associations between climate and dengue in Dhaka, Bangladesh.
    Sharmin S; Glass K; Viennet E; Harley D
    Stat Methods Med Res; 2018 Apr; 27(4):991-1000. PubMed ID: 27177886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Risk factors for arbovirus infections in a low-income community of Rio de Janeiro, Brazil, 2015-2016.
    Rodrigues NCP; Daumas RP; de Almeida AS; Dos Santos RS; Koster I; Rodrigues PP; Gomes MF; Macedo AF; Gerardi A; Leite IDC
    PLoS One; 2018; 13(6):e0198357. PubMed ID: 29879155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hierarchical model for analyzing multisite individual-level disease surveillance data from multiple systems.
    Zhang Y; Chang HH; Cheng Q; Collender PA; Li T; He J; Remais JV
    Biometrics; 2023 Jun; 79(2):1507-1519. PubMed ID: 35191022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.
    Mathew B; Holand AM; Koistinen P; Léon J; Sillanpää MJ
    Theor Appl Genet; 2016 Feb; 129(2):215-25. PubMed ID: 26582509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal diffusion of influenza A (H1N1): Starting point and risk factors.
    da Costa ACC; Codeço CT; Krainski ET; Gomes MFDC; Nobre AA
    PLoS One; 2018; 13(9):e0202832. PubMed ID: 30180215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A flexible Bayesian nonconfounding spatial model for analysis of dispersed count data.
    Nadifar M; Baghishani H; Fallah A
    Biom J; 2022 Apr; 64(4):758-770. PubMed ID: 34985802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian penalized spline models for the analysis of spatio-temporal count data.
    Bauer C; Wakefield J; Rue H; Self S; Feng Z; Wang Y
    Stat Med; 2016 May; 35(11):1848-65. PubMed ID: 26530705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in Germany.
    Manitz J; Höhle M
    Biom J; 2013 Jul; 55(4):509-26. PubMed ID: 23589348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial extreme learning machines: An application on prediction of disease counts.
    Prates MO
    Stat Methods Med Res; 2019 Sep; 28(9):2583-2594. PubMed ID: 29629629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring spatial patterns in the associations between local AIDS incidence and socioeconomic and demographic variables in the state of Rio de Janeiro, Brazil.
    Alves AT; Nobre FF; Waller LA
    Spat Spatiotemporal Epidemiol; 2016 May; 17():85-93. PubMed ID: 27246275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Google Health Trends performance reflecting dengue incidence for the Brazilian states.
    Romero-Alvarez D; Parikh N; Osthus D; Martinez K; Generous N; Del Valle S; Manore CA
    BMC Infect Dis; 2020 Mar; 20(1):252. PubMed ID: 32228508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Factors predicting the severity of dengue in patients with warning signs in Rio de Janeiro, Brazil (1986-2012).
    Gonçalves BS; Nogueira RMR; Bispo de Filippis AM; Horta MAP
    Trans R Soc Trop Med Hyg; 2019 Nov; 113(11):670-677. PubMed ID: 31340049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.