These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31293438)

  • 1. Metabolic Cost of Activation and Mechanical Efficiency of Mouse Soleus Muscle Fiber Bundles During Repetitive Concentric and Eccentric Contractions.
    Lemaire KK; Jaspers RT; Kistemaker DA; van Soest AJK; van der Laarse WJ
    Front Physiol; 2019; 10():760. PubMed ID: 31293438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles.
    Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T
    Front Physiol; 2020; 11():921. PubMed ID: 32848862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of phase of stimulation on acute damage caused by eccentric contractions in mouse soleus muscle.
    Stevens ED
    J Appl Physiol (1985); 1996 Jun; 80(6):1958-62. PubMed ID: 8806900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical factors in the initiation of eccentric contraction-induced injury in rat soleus muscle.
    Warren GL; Hayes DA; Lowe DA; Armstrong RB
    J Physiol; 1993 May; 464():457-75. PubMed ID: 8229813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy cost of isometric force production after active shortening in skinned muscle fibres.
    Joumaa V; Fitzowich A; Herzog W
    J Exp Biol; 2017 Apr; 220(Pt 8):1509-1515. PubMed ID: 28232399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Metabolic Models for Estimation of Energy Expenditure During Isolated Concentric and Eccentric Muscle Contractions.
    Lentz-Nielsen N; Boysen MD; Munk-Hansen M; Laursen AD; Steffensen M; Engelund BK; Iversen K; Larsen RG; de Zee M
    J Biomech Eng; 2023 Dec; 145(12):. PubMed ID: 37801051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors contributing to lower metabolic demand of eccentric compared with concentric cycling.
    Peñailillo L; Blazevich AJ; Nosaka K
    J Appl Physiol (1985); 2017 Oct; 123(4):884-893. PubMed ID: 28663378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved mammalian muscle mechanics during eccentric contractions.
    Kissane RWP; Askew GN
    J Physiol; 2024 Mar; 602(6):1105-1126. PubMed ID: 38400808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power Amplification Increases With Contraction Velocity During Stretch-Shortening Cycles of Skinned Muscle Fibers.
    Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T
    Front Physiol; 2021; 12():644981. PubMed ID: 33868012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output.
    Fenwick AJ; Wood AM; Tanner BCW
    PLoS One; 2017; 12(12):e0190335. PubMed ID: 29284062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency and cross-bridge work output of skeletal muscle is decreased at low levels of activation.
    Lewis DB; Barclay CJ
    Pflugers Arch; 2014 Mar; 466(3):599-609. PubMed ID: 24013759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca
    Fukutani A; Westerblad H; Jardemark K; Bruton J
    Sci Rep; 2024 Jan; 14(1):689. PubMed ID: 38184730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compliant tendon increases fatigue resistance and net efficiency during fatiguing cyclic contractions of mouse soleus muscle.
    Lichtwark GA; Barclay CJ
    Acta Physiol (Oxf); 2012 Apr; 204(4):533-43. PubMed ID: 21910835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged loss of force and power following fatiguing contractions in rat soleus muscles. Is low-frequency fatigue an issue during dynamic contractions?
    Herskind J; Kristensen AM; Ørtenblad N; de Paoli F; Vissing K; Overgaard K
    Am J Physiol Cell Physiol; 2022 Dec; 323(6):C1642-C1651. PubMed ID: 36317798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficiency of fast- and slow-twitch muscles of the mouse performing cyclic contractions.
    Barclay CJ
    J Exp Biol; 1994 Aug; 193():65-78. PubMed ID: 7964400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faster triceps surae muscle cyclic contractions alter muscle activity and whole body metabolic rate.
    Swinnen W; Hoogkamer W; De Groote F; Vanwanseele B
    J Appl Physiol (1985); 2023 Feb; 134(2):395-404. PubMed ID: 36603047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations.
    Franchi MV; Reeves ND; Narici MV
    Front Physiol; 2017; 8():447. PubMed ID: 28725197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the efficiency of rat papillary muscles during afterloaded isotonic contractions and contractions with sinusoidal length changes.
    Mellors LJ; Gibbs CL; Barclay CJ
    J Exp Biol; 2001 May; 204(Pt 10):1765-74. PubMed ID: 11316497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase?
    Joumaa V; Fukutani A; Herzog W
    Front Physiol; 2020; 11():567538. PubMed ID: 33536930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle length effect on corticospinal excitability during maximal concentric, isometric and eccentric contractions of the knee extensors.
    Doguet V; Nosaka K; Guével A; Thickbroom G; Ishimura K; Jubeau M
    Exp Physiol; 2017 Nov; 102(11):1513-1523. PubMed ID: 28796385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.