BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31293444)

  • 1. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone.
    Yang PF; Nie XT; Wang Z; Al-Qudsy LHH; Ren L; Xu HY; Rittweger J; Shang P
    Front Physiol; 2019; 10():775. PubMed ID: 31293444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse.
    Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF
    Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.
    Yang PF; Huang LW; Nie XT; Yang Y; Wang Z; Ren L; Xu HY; Shang P
    J Musculoskelet Neuronal Interact; 2018 Jun; 18(2):152-164. PubMed ID: 29855437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse.
    DeLong A; Friedman MA; Tucker SM; Krause AR; Kunselman A; Donahue HJ; Lewis GS
    JBMR Plus; 2020 Mar; 4(3):e10322. PubMed ID: 32161839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive changes in micromechanical environments of cancellous and cortical bone in response to in vivo loading and disuse.
    Yang H; Xu X; Bullock W; Main RP
    J Biomech; 2019 May; 89():85-94. PubMed ID: 31047696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coarse-grained molecular dynamics investigation of the role of mineral arrangement on the mechanical properties of mineralized collagen fibrils.
    Tavakol M; Vaughan TJ
    J R Soc Interface; 2023 Jan; 20(198):20220803. PubMed ID: 36695019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Bone Miner Res; 2016 Feb; 31(2):380-90. PubMed ID: 26866939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Down-regulation of N-methyl D-aspartate receptor in rat-modeled disuse osteopenia.
    Ho ML; Tsai TN; Chang JK; Shao TS; Jeng YR; Hsu C
    Osteoporos Int; 2005 Dec; 16(12):1780-8. PubMed ID: 15997422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue.
    Hang F; Barber AH
    J R Soc Interface; 2011 Apr; 8(57):500-5. PubMed ID: 20961895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone.
    Nair AK; Gautieri A; Buehler MJ
    Biomacromolecules; 2014 Jul; 15(7):2494-500. PubMed ID: 24892376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy.
    Ryou H; Tay FR; Ossa A; Arola D
    J Mech Behav Biomed Mater; 2023 Feb; 138():105624. PubMed ID: 36543081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mouse model of disuse osteoporosis based on a movable noninvasive 3D-printed unloading device.
    Li J; Geng J; Lin T; Cai M; Sun Y
    J Orthop Translat; 2022 Mar; 33():1-12. PubMed ID: 35070713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral and cross-linking in collagen fibrils: The mechanical behavior of bone tissue at the nano-scale.
    Kamml J; Acevedo C; Kammer DS
    ArXiv; 2024 Mar; ():. PubMed ID: 38562451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.