These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31293742)
1. Metal Aster A; Wang S; Mirmohades M; Esmieu C; Berggren G; Hammarström L; Lomoth R Chem Sci; 2019 Jun; 10(21):5582-5588. PubMed ID: 31293742 [TBL] [Abstract][Full Text] [Related]
2. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere. Rauchfuss TB Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848 [TBL] [Abstract][Full Text] [Related]
3. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S; Schwartz L; Stein M; Ott S; Haumann M Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829 [TBL] [Abstract][Full Text] [Related]
4. Ligand versus metal protonation of an iron hydrogenase active site mimic. Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128 [TBL] [Abstract][Full Text] [Related]
5. Structural and Kinetic Studies of Intermediates of a Biomimetic Diiron Proton-Reduction Catalyst. Wang S; Aster A; Mirmohades M; Lomoth R; Hammarström L Inorg Chem; 2018 Jan; 57(2):768-776. PubMed ID: 29297686 [TBL] [Abstract][Full Text] [Related]
6. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Huynh MT; Wang W; Rauchfuss TB; Hammes-Schiffer S Inorg Chem; 2014 Oct; 53(19):10301-11. PubMed ID: 25207842 [TBL] [Abstract][Full Text] [Related]
7. Electronic structure of an [FeFe] hydrogenase model complex in solution revealed by X-ray absorption spectroscopy using narrow-band emission detection. Leidel N; Chernev P; Havelius KG; Schwartz L; Ott S; Haumann M J Am Chem Soc; 2012 Aug; 134(34):14142-57. PubMed ID: 22860512 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical reduction and protonation of a biomimetic diiron azadithiolate hexacarbonyl complex: Mechanistic insights. Bourrez M; Gloaguen F Bioelectrochemistry; 2023 Oct; 153():108488. PubMed ID: 37329847 [TBL] [Abstract][Full Text] [Related]
9. Models of the iron-only hydrogenase enzyme: structure, electrochemistry and catalytic activity of Fe Unwin DG; Ghosh S; Ridley F; Richmond MG; Holt KB; Hogarth G Dalton Trans; 2019 May; 48(18):6174-6190. PubMed ID: 30942796 [TBL] [Abstract][Full Text] [Related]
10. The Molecular Proceedings of Biological Hydrogen Turnover. Haumann M; Stripp ST Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117 [TBL] [Abstract][Full Text] [Related]
11. Temperature Dependence of Structural Dynamics at the Catalytic Cofactor of [FeFe]-hydrogenase. Stripp ST; Mebs S; Haumann M Inorg Chem; 2020 Nov; 59(22):16474-16488. PubMed ID: 33147959 [TBL] [Abstract][Full Text] [Related]
12. DFT dissection of the reduction step in H2 catalytic production by [FeFe]-hydrogenase-inspired models: can the bridging hydride become more reactive than the terminal isomer? Filippi G; Arrigoni F; Bertini L; De Gioia L; Zampella G Inorg Chem; 2015 Oct; 54(19):9529-42. PubMed ID: 26359661 [TBL] [Abstract][Full Text] [Related]
13. Photoinduced Terminal Hydride of [FeFe]-Hydrogenase Biomimetic Complexes. Niu S; Nelson AE; De La Torre P; Li H; Works CF; Hall MB Inorg Chem; 2019 Oct; 58(20):13737-13741. PubMed ID: 31566967 [TBL] [Abstract][Full Text] [Related]
14. Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate. Carroll ME; Barton BE; Rauchfuss TB; Carroll PJ J Am Chem Soc; 2012 Nov; 134(45):18843-52. PubMed ID: 23126330 [TBL] [Abstract][Full Text] [Related]
15. Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride. Barton BE; Rauchfuss TB Inorg Chem; 2008 Apr; 47(7):2261-3. PubMed ID: 18333613 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic insights into the catalysis of electrochemical proton reduction by a diiron azadithiolate complex. Bourrez M; Steinmetz R; Gloaguen F Inorg Chem; 2014 Oct; 53(19):10667-73. PubMed ID: 25219687 [TBL] [Abstract][Full Text] [Related]
17. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by Mebs S; Duan J; Wittkamp F; Stripp ST; Happe T; Apfel UP; Winkler M; Haumann M Inorg Chem; 2019 Mar; 58(6):4000-4013. PubMed ID: 30802044 [TBL] [Abstract][Full Text] [Related]
18. Hydride binding to the active site of [FeFe]-hydrogenase. Chernev P; Lambertz C; Brünje A; Leidel N; Sigfridsson KG; Kositzki R; Hsieh CH; Yao S; Schiwon R; Driess M; Limberg C; Happe T; Haumann M Inorg Chem; 2014 Nov; 53(22):12164-77. PubMed ID: 25369169 [TBL] [Abstract][Full Text] [Related]
19. Aza- and oxadithiolates are probable proton relays in functional models for the [FeFe]-hydrogenases. Barton BE; Olsen MT; Rauchfuss TB J Am Chem Soc; 2008 Dec; 130(50):16834-5. PubMed ID: 19053433 [TBL] [Abstract][Full Text] [Related]
20. Proton Transfer Mechanisms in Bimetallic Hydrogenases. Tai H; Hirota S; Stripp ST Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]