These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31294052)

  • 1. Coefficient datasets for high-order, stable, and conservative boundary schemes for central and compact finite differences.
    Brady PT; Livescu D
    Data Brief; 2019 Aug; 25():104086. PubMed ID: 31294052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of invariant compact finite-difference schemes.
    Ozbenli E; Vedula P
    Phys Rev E; 2020 Feb; 101(2-1):023303. PubMed ID: 32168606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables.
    Zanotti O; Dumbser M
    Comput Astrophys Cosmol; 2016; 3(1):1. PubMed ID: 31149558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation with artificial boundary conditions.
    Trofimov VA; Trykin EM
    PLoS One; 2018; 13(10):e0206235. PubMed ID: 30379875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the convergence of a high-accuracy compact conservative scheme for the modified regularized long-wave equation.
    Pan X; Zhang L
    Springerplus; 2016; 5():474. PubMed ID: 27217989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonoscillatory central schemes for hyperbolic systems of conservation laws in three-space dimensions.
    Guarendi AN; Chandy AJ
    ScientificWorldJournal; 2013; 2013():672187. PubMed ID: 24058287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic.
    Abgrall R; Nassajian Mojarrad F
    Commun Appl Math Comput; 2024; 6(2):963-991. PubMed ID: 38840798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matched interface and boundary (MIB) for the implementation of boundary conditions in high-order central finite differences.
    Zhao S; Wei GW
    Int J Numer Methods Eng; 2009 Mar; 77(12):1690-1730. PubMed ID: 20485574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central upwind scheme for a compressible two-phase flow model.
    Ahmed M; Saleem MR; Zia S; Qamar S
    PLoS One; 2015; 10(6):e0126273. PubMed ID: 26039242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbational blowup solutions to the compressible Euler equations with damping.
    Cheung KL
    Springerplus; 2016; 5():196. PubMed ID: 27026892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact fourth-order finite difference method for solving differential equations.
    Wilkinson PB; Fromhold TM; Tench CR; Taylor RP; Micolich AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):047701. PubMed ID: 11690185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matched Interface and Boundary Method for Elasticity Interface Problems.
    Wang B; Xia K; Wei GW
    J Comput Appl Math; 2015 Sep; 285():203-225. PubMed ID: 25914439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite volume schemes for the numerical simulation of tracer transport in plants.
    Bühler J; Huber G; von Lieres E
    Math Biosci; 2017 Jun; 288():14-20. PubMed ID: 28216295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.
    Hamlin ND; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal boundary condition for the thermal lattice Boltzmann equation.
    Tang GH; Tao WQ; He YL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016703. PubMed ID: 16090130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.