BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3129433)

  • 21. Targeting of E. coli beta-galactosidase to the nucleus in yeast.
    Hall MN; Hereford L; Herskowitz I
    Cell; 1984 Apr; 36(4):1057-65. PubMed ID: 6323016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impediments to secretion of green fluorescent protein and its fusion from Saccharomyces cerevisiae.
    Li J; Xu H; Bentley WE; Rao G
    Biotechnol Prog; 2002; 18(4):831-8. PubMed ID: 12153318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yeast genes fused to beta-galactosidase in Escherichia coli can be expressed normally in yeast.
    Rose M; Casadaban MJ; Botstein D
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2460-4. PubMed ID: 6787605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A DNA fragment containing the upstream activator sequence determines nucleosome positioning of the transcriptionally repressed PHO5 gene of Saccharomyces cerevisiae.
    Bergman LW
    Mol Cell Biol; 1986 Jul; 6(7):2298-304. PubMed ID: 3023927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutant invertase proteins accumulate in the yeast endoplasmic reticulum.
    Bielefeld M; Hollenberg CP
    Mol Gen Genet; 1989 Feb; 215(3):401-6. PubMed ID: 2651889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene.
    Bajwa W; Rudolph H; Hinnen A
    Yeast; 1987 Mar; 3(1):33-42. PubMed ID: 2849256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional analysis of the signal-sequence processing site of yeast acid phosphatase.
    Monod M; Haguenauer-Tsapis R; Rauseo-Koenig I; Hinnen A
    Eur J Biochem; 1989 Jun; 182(2):213-21. PubMed ID: 2500339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alpha-factor leader sequence-directed transport of Escherichia coli beta-galactosidase in the secretory pathway of Saccharomyces cerevisiae.
    Das RC; Shultz JL; Lehman DJ
    Mol Gen Genet; 1989 Aug; 218(2):240-8. PubMed ID: 2506425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown.
    Andreeva N; Ledova L; Ryasanova L; Kulakovskaya T; Eldarov M
    Folia Microbiol (Praha); 2019 Nov; 64(6):867-873. PubMed ID: 30937822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast.
    Guarente L
    Methods Enzymol; 1983; 101():181-91. PubMed ID: 6310321
    [No Abstract]   [Full Text] [Related]  

  • 32. Bacterial plasmid pBR322 sequences serve as upstream activating sequences in Saccharomyces cerevisiae.
    Sidhu RS; Bollon AP
    Yeast; 1990; 6(3):221-9. PubMed ID: 2190432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Candida albicans TDH3 gene promotes secretion of internal invertase when expressed in Saccharomyces cerevisiae as a glyceraldehyde-3-phosphate dehydrogenase-invertase fusion protein.
    Delgado ML; Gil ML; Gozalbo D
    Yeast; 2003 Jun; 20(8):713-22. PubMed ID: 12794932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of Ty-lacZ fusions in Saccharomyces cerevisiae.
    Bowen BA; Fulton AM; Tuite MF; Kingsman SM; Kingsman AJ
    Nucleic Acids Res; 1984 Feb; 12(3):1627-40. PubMed ID: 6322112
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sequence in beta-hexosaminidase from Dictyostelium discoideum required for sorting of proteins to a compartment involved in developmentally induced secretion.
    Lacoste CH; Graham T; Kaplan A
    J Biol Chem; 1992 Mar; 267(9):5942-8. PubMed ID: 1532576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast secretory mutants that block the formation of active cell surface enzymes.
    Ferro-Novick S; Novick P; Field C; Schekman R
    J Cell Biol; 1984 Jan; 98(1):35-43. PubMed ID: 6368571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A positive regulatory sequence of the Saccharomyces cerevisiae ENO1 gene.
    Uemura H; Shiba T; Machida M; Matsui I; Jigami Y; Tanaka H
    J Biochem; 1987 Jul; 102(1):181-9. PubMed ID: 3117780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Secretion of somatostatin by Saccharomyces cerevisiae. Correct processing of an alpha-factor-somatostatin hybrid.
    Green R; Schaber MD; Shields D; Kramer R
    J Biol Chem; 1986 Jun; 261(16):7558-65. PubMed ID: 2872217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of beta-galactosidase.
    Shapira SK; Chou J; Richaud FV; Casadaban MJ
    Gene; 1983 Nov; 25(1):71-82. PubMed ID: 6319233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.