These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 31294571)
1. Bioresponsive Protein Complex of aPD1 and aCD47 Antibodies for Enhanced Immunotherapy. Chen Q; Chen G; Chen J; Shen J; Zhang X; Wang J; Chan A; Gu Z Nano Lett; 2019 Aug; 19(8):4879-4889. PubMed ID: 31294571 [TBL] [Abstract][Full Text] [Related]
2. A Dual-Bioresponsive Drug-Delivery Depot for Combination of Epigenetic Modulation and Immune Checkpoint Blockade. Ruan H; Hu Q; Wen D; Chen Q; Chen G; Lu Y; Wang J; Cheng H; Lu W; Gu Z Adv Mater; 2019 Apr; 31(17):e1806957. PubMed ID: 30856290 [TBL] [Abstract][Full Text] [Related]
3. Photothermal therapy mediated by phase-transformation nanoparticles facilitates delivery of anti-PD1 antibody and synergizes with antitumor immunotherapy for melanoma. Zhang N; Song J; Liu Y; Liu M; Zhang L; Sheng D; Deng L; Yi H; Wu M; Zheng Y; Wang Z; Yang Z J Control Release; 2019 Jul; 306():15-28. PubMed ID: 31132380 [TBL] [Abstract][Full Text] [Related]
4. Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate Adenocarcinoma and Melanoma. Elia AR; Caputo S; Bellone M Front Immunol; 2018; 9():1786. PubMed ID: 30108594 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional Immunoliposomes Enhance the Immunotherapeutic Effects of PD-L1 Antibodies against Melanoma by Reprogramming Immunosuppressive Tumor Microenvironment. Hei Y; Chen Y; Li Q; Mei Z; Pan J; Zhang S; Xiong C; Su X; Wei S Small; 2022 Mar; 18(9):e2105118. PubMed ID: 34915595 [TBL] [Abstract][Full Text] [Related]
6. Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Yu S; Wang C; Yu J; Wang J; Lu Y; Zhang Y; Zhang X; Hu Q; Sun W; He C; Chen X; Gu Z Adv Mater; 2018 Jul; 30(28):e1801527. PubMed ID: 29786888 [TBL] [Abstract][Full Text] [Related]
7. The application of nanotechnology in immune checkpoint blockade for cancer treatment. Deng H; Zhang Z J Control Release; 2018 Nov; 290():28-45. PubMed ID: 30287266 [TBL] [Abstract][Full Text] [Related]
8. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616 [TBL] [Abstract][Full Text] [Related]
9. Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses. Liu B; Guo H; Xu J; Qin T; Guo Q; Gu N; Zhang D; Qian W; Dai J; Hou S; Wang H; Guo Y MAbs; 2018; 10(2):315-324. PubMed ID: 29182441 [TBL] [Abstract][Full Text] [Related]
10. Synergistic Transcutaneous Immunotherapy Enhances Antitumor Immune Responses through Delivery of Checkpoint Inhibitors. Ye Y; Wang J; Hu Q; Hochu GM; Xin H; Wang C; Gu Z ACS Nano; 2016 Sep; 10(9):8956-63. PubMed ID: 27599066 [TBL] [Abstract][Full Text] [Related]
11. Atypical autoimmune adverse effects with checkpoint blockade therapies. Friedman CF; Snyder A Ann Oncol; 2017 Feb; 28(2):206-207. PubMed ID: 27993802 [No Abstract] [Full Text] [Related]
12. [Immune checkpoint‑targeted cancer immunotherapies]. Swatler J; Kozłowska E Postepy Hig Med Dosw (Online); 2016 Jan; 70():25-42. PubMed ID: 26864062 [TBL] [Abstract][Full Text] [Related]
13. Combined Blockade of IL6 and PD-1/PD-L1 Signaling Abrogates Mutual Regulation of Their Immunosuppressive Effects in the Tumor Microenvironment. Tsukamoto H; Fujieda K; Miyashita A; Fukushima S; Ikeda T; Kubo Y; Senju S; Ihn H; Nishimura Y; Oshiumi H Cancer Res; 2018 Sep; 78(17):5011-5022. PubMed ID: 29967259 [TBL] [Abstract][Full Text] [Related]
14. CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises. Tong B; Wang M Future Oncol; 2018 Sep; 14(21):2179-2188. PubMed ID: 29667847 [TBL] [Abstract][Full Text] [Related]
15. The Puzzle of Predicting Response to Immune Checkpoint Blockade. Onyshchenko M EBioMedicine; 2018 Jul; 33():18-19. PubMed ID: 29934042 [No Abstract] [Full Text] [Related]
16. Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity. Kuehm LM; Wolf K; Zahour J; DiPaolo RJ; Teague RM Cancer Immunol Immunother; 2019 Jul; 68(7):1095-1106. PubMed ID: 31104075 [TBL] [Abstract][Full Text] [Related]
17. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Jiang Y; Chen M; Nie H; Yuan Y Hum Vaccin Immunother; 2019; 15(5):1111-1122. PubMed ID: 30888929 [TBL] [Abstract][Full Text] [Related]
18. Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. Dong Q; Han D; Li B; Yang Y; Ren L; Xiao T; Zhang J; Li Z; Yang H; Liu H Int J Biol Macromol; 2023 Jun; 240():124342. PubMed ID: 37030459 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in the clinical development of immune checkpoint blockade therapy. Ghahremanloo A; Soltani A; Modaresi SMS; Hashemy SI Cell Oncol (Dordr); 2019 Oct; 42(5):609-626. PubMed ID: 31201647 [TBL] [Abstract][Full Text] [Related]
20. A new immune-nanoplatform for promoting adaptive antitumor immune response. Merino M; Contreras A; Casares N; Troconiz IF; Ten Hagen TL; Berraondo P; Zalba S; Garrido MJ Nanomedicine; 2019 Apr; 17():13-25. PubMed ID: 30654186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]