These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 31294818)
1. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device. Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818 [TBL] [Abstract][Full Text] [Related]
2. GSK-3β regulates the endothelial-to-mesenchymal transition via reciprocal crosstalk between NSCLC cells and HUVECs in multicellular tumor spheroid models. Kim SH; Song Y; Seo HR J Exp Clin Cancer Res; 2019 Feb; 38(1):46. PubMed ID: 30709379 [TBL] [Abstract][Full Text] [Related]
3. Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Dhiman N; Shagaghi N; Bhave M; Sumer H; Kingshott P; Rath SN Cytotherapy; 2021 Jan; 23(1):25-36. PubMed ID: 32771259 [TBL] [Abstract][Full Text] [Related]
4. Multidimensional controllable fabrication of tumor spheroids based on a microfluidic device. Hou Y; Zheng Y; Zheng X; Sun Y; Yi X; Wu Z; Lin JM Lab Chip; 2023 May; 23(11):2654-2663. PubMed ID: 37190976 [TBL] [Abstract][Full Text] [Related]
5. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array. Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic device flow field characterization around tumor spheroids with tunable necrosis produced in an optimized off-chip process. Baye J; Galvin C; Shen AQ Biomed Microdevices; 2017 Sep; 19(3):59. PubMed ID: 28667400 [TBL] [Abstract][Full Text] [Related]
7. Advances in cancer modeling: fluidic systems for increasing representativeness of large 3D multicellular spheroids. Piccinini F; Santis I; Bevilacqua A Biotechniques; 2018 Dec; 65(6):312-314. PubMed ID: 30477324 [No Abstract] [Full Text] [Related]
8. Study of the Chemotactic Response of Multicellular Spheroids in a Microfluidic Device. Ayuso JM; Basheer HA; Monge R; Sánchez-Álvarez P; Doblaré M; Shnyder SD; Vinader V; Afarinkia K; Fernández LJ; Ochoa I PLoS One; 2015; 10(10):e0139515. PubMed ID: 26444904 [TBL] [Abstract][Full Text] [Related]
9. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. Jeong SY; Lee JH; Shin Y; Chung S; Kuh HJ PLoS One; 2016; 11(7):e0159013. PubMed ID: 27391808 [TBL] [Abstract][Full Text] [Related]
10. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Kochanek SJ; Close DA; Johnston PA Assay Drug Dev Technol; 2019 Jan; 17(1):17-36. PubMed ID: 30592624 [TBL] [Abstract][Full Text] [Related]
11. In vitro modeling of solid tumor interactions with perfused blood vessels. Kwak TJ; Lee E Sci Rep; 2020 Nov; 10(1):20142. PubMed ID: 33214583 [TBL] [Abstract][Full Text] [Related]
12. High Quality Multicellular Tumor Spheroid Induction Platform Based on Anisotropic Magnetic Hydrogel. Tang S; Hu K; Sun J; Li Y; Guo Z; Liu M; Liu Q; Zhang F; Gu N ACS Appl Mater Interfaces; 2017 Mar; 9(12):10446-10452. PubMed ID: 28247762 [TBL] [Abstract][Full Text] [Related]
13. High-Content Screening Comparison of Cancer Drug Accumulation and Distribution in Two-Dimensional and Three-Dimensional Culture Models of Head and Neck Cancer. Shan F; Close DA; Camarco DP; Johnston PA Assay Drug Dev Technol; 2018 Jan; 16(1):27-50. PubMed ID: 29215913 [TBL] [Abstract][Full Text] [Related]
14. Selective Cytotoxicity of a Novel Trp-Rich Peptide against Lung Tumor Spheroids Encapsulated inside a 3D Microfluidic Device. Dhiman N; Shagaghi N; Bhave M; Sumer H; Kingshott P; Rath SN Adv Biosyst; 2020 Apr; 4(4):e1900285. PubMed ID: 32293162 [TBL] [Abstract][Full Text] [Related]
15. Maximizing the Value of Cancer Drug Screening in Multicellular Tumor Spheroid Cultures: A Case Study in Five Head and Neck Squamous Cell Carcinoma Cell Lines. Kochanek SJ; Close DA; Camarco DP; Johnston PA SLAS Discov; 2020 Apr; 25(4):329-349. PubMed ID: 31983262 [TBL] [Abstract][Full Text] [Related]
16. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Lazzari G; Nicolas V; Matsusaki M; Akashi M; Couvreur P; Mura S Acta Biomater; 2018 Sep; 78():296-307. PubMed ID: 30099198 [TBL] [Abstract][Full Text] [Related]
17. Comparison of VEGF-A secretion from tumor cells under cellular stresses in conventional monolayer culture and microfluidic three-dimensional spheroid models. Sarkar S; Peng CC; Tung YC PLoS One; 2020; 15(11):e0240833. PubMed ID: 33175874 [TBL] [Abstract][Full Text] [Related]
18. A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Jin HJ; Cho YH; Gu JM; Kim J; Oh YS Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070 [TBL] [Abstract][Full Text] [Related]
19. Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Yu L; Chen MC; Cheung KC Lab Chip; 2010 Sep; 10(18):2424-32. PubMed ID: 20694216 [TBL] [Abstract][Full Text] [Related]
20. Towards personalized medicine: chemosensitivity assays of patient lung cancer cell spheroids in a perfused microfluidic platform. Ruppen J; Wildhaber FD; Strub C; Hall SR; Schmid RA; Geiser T; Guenat OT Lab Chip; 2015 Jul; 15(14):3076-85. PubMed ID: 26088102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]